Math 123: First Order D.E.s and Slope Fields

Ryan Blair

CSU Long Beach

Thursday March 3, 2016
Outline

1. First Order Differential Equations

2. Slope Fields
Types of Differential equations

Definition
A differential equation is any equation involving a function, its derivatives.

Definition
If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an nth order differential equation.

Definition
A first order differential equation \(\frac{dy}{dx} = F(x, y) \) together with and initial condition \(y(a) = b \) is an initial value problem.
Types of Differential equations

Definition
A differential equation is any equation involving a function, its derivatives.

Definition
If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an nth order differential equation.

Definition
A first order differential equation \(\frac{dy}{dx} = F(x, y) \) together with an initial condition \(y(a) = b \) is an initial value problem.

Example: Solve the initial value problem \(y' = \frac{1}{2}y \) and \(y(0) = 2 \)
Types of Differential equations

Definition
A differential equation is any equation involving a function, its derivatives.

Definition
If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an \textbf{nth order} differential equation.

Definition
A first order differential equation \(\frac{dy}{dx} = F(x, y) \) together with an \textbf{initial condition} \(y(a) = b \) is an \textbf{initial value problem}

Example: Solve the initial value problem \(y' = \frac{1}{2}y \) and \(y(0) = 2 \)
Example: Solve the initial value problem \(\frac{dy}{dx} = \frac{xe^x}{\cos(y)} \) and \(y(0) = 0 \)
Slope Fields (Direction Fields)

Definition

Given a first order D.E. \(\frac{dy}{dx} = F(x, y) \) a slope field is a function that assigns the slope \(F(x, y) \) to each point in the plane.
Slope Fields (Direction Fields)

Definition

Given a first order D.E. \(\frac{dy}{dx} = F(x, y) \) a **slope field** is a function that assigns the slope \(F(x, y) \) to each point in the plane.

Example: Sketch the slope field for \(y' = (y - 1)(y - 3) \).
Slope Fields (Direction Fields)

Definition
Given a first order D.E. $\frac{dy}{dx} = F(x, y)$ a **slope field** is a function that assigns the slope $F(x, y)$ to each point in the plane.

Example: Sketch the slope field for $y' = (y - 1)(y - 3)$.

Example: Sketch the solution for the IVP $y' = (y - 1)(y - 3)$ and $y(0) = 2$. What about $y(0) = 0$.
Slope Fields (Direction Fields)

Definition

Given a first order D.E. \(\frac{dy}{dx} = F(x, y) \) a **slope field** is a function that assigns the slope \(F(x, y) \) to each point in the plane.

Example: Sketch the slope field for \(y' = (y - 1)(y - 3) \).

Example: Sketch the solution for the IVP \(y' = (y - 1)(y - 3) \) and \(y(0) = 2 \). What about \(y(0) = 0 \).

Example: Find \(\lim_{x \to \infty} y(x) \) if \(y(x) \) is a solution to the IVP \(y' = (y - 1)(y - 3) \) and \(y(0) = 0 \).
Slope Fields Using Dfield

Here we will be using the free internet software Dfield.

Example: Determine the limits as x goes to infinity for solutions to $y' = \left(\frac{1}{2}y(5 - y)\right)$ (A Verhulst Equation).

Example: Determine the initial values for which solutions to $y' = x^2 + y^2 - 4$ are *always* increasing.