Math 123: Introduction to Differential Equations

Ryan Blair

CSU Long Beach

Tuesday March 1, 2016
1. Definition of Differential Equation
2. Models for Population Growth
3. Separable Differential Equations
Definition

A differential equation is any equation involving a function, its derivatives.

Definition

A solution to a differential equation is any function that satisfies the equation.
Differential equations

Definition
A differential equation is any equation involving a function, its derivatives.

Definition
A solution to a differential equation is any function that satisfies the equation.

Example: Solve $y' = y$
Differential equations

Definition
A differential equation is any equation involving a function, its derivatives.

Definition
A solution to a differential equation is any function that satisfies the equation.

Example: Solve $y' = y$
Example: Solve $y'' = -y$
The Math of Frisky Bunnies

Suppose bunnies reproduce according to the following rules

1. We start in month zero with one male and one female bunny.
2. Every month each female bunny gives birth to one male and one female bunny.

Let \(B(t) \) be the number of bunnies \(t \) months after month zero.
Suppose bunnies reproduce according to the following rules

1. We start in month zero with one male and one female bunny.
2. Every month each female bunny gives birth to one male and one female bunny.

Let $B(t)$ be the number of bunnies t months after month zero.
Estimate $B'(t)$.
How should we model $B(t)$?
A Few Famous Differential Equations

1. Einstein’s field equation in general relativity
2. The Navier-Stokes equations in fluid dynamics
3. Verhulst equation - biological population growth
4. The Black-Scholes PDE - models financial markets
A **Separable** differential equation is of the form

\[
\frac{dy}{dx} = f(x)g(y)
\]
Separable Differential Equations

Definition

A **Separable** differential equation is of the form

\[
\frac{dy}{dx} = f(x)g(y)
\]

Any solution to the following integral equation is a solution to the above differential equation.

\[
\int \frac{1}{g(y)} dy = \int f(x) dx
\]
A **Separable** differential equation is of the form

\[\frac{dy}{dx} = f(x)g(y) \]

Any solution to the following integral equation is a solution to the above differential equation.

\[\int \frac{1}{g(y)} dy = \int f(x) dx \]

Example: Prove the above statement.
Separable Differential Equations

Definition

A **Separable** differential equation is of the form

\[
\frac{dy}{dx} = f(x)g(y)
\]

Any solution to the following integral equation is a solution to the above differential equation.

\[
\int \frac{1}{g(y)} dy = \int f(x) dx
\]

Example: Prove the above statement.

Example: Solve the following D.E. \(\frac{dy}{dx} = \frac{\cos(x)}{y^2} \).
Separable Differential Equations

Definition

A **Separable** differential equation is of the form

\[\frac{dy}{dx} = f(x)g(y) \]

Any solution to the following integral equation is a solution to the above differential equation.

\[\int \frac{1}{g(y)} dy = \int f(x) dx \]

Example: Prove the above statement.

Example: Solve the following D.E. \(\frac{dy}{dx} = \frac{\cos(x)}{y^2} \).

Example: Solve the following D.E. \(\frac{dy}{dx} = y \).
Logistic Growth (the Verhulst model)

Hypotheses for the population model:

1. For small populations the population growth is proportional to the population size.
2. The population can not grow larger than a carrying capacity M.

These hypotheses give rise to the following D.E.

$$\frac{dy}{dx} = ky(M-y)$$

Where k and M are constants.

Exercise: Find the general solution to this D.E.
Hypotheses for the population model:

1. For small populations the population growth is proportional to the population size.
2. The population cannot grow larger than a carrying capacity M.

These hypotheses give rise to the following D.E.

$$\frac{dy}{dx} = ky(M - y)$$

Where k and M are constants.
Hypotheses for the population model:

1. For small populations the population growth is proportional to the population size.
2. The population cannot grow larger than a carrying capacity M.

These hypotheses give rise to the following D.E.

$$\frac{dy}{dx} = ky(M - y)$$

Where k and M are constants.

Exercise: Find the general solution to this D.E.