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Outline

1 Improper Integrals
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Review From Last Time

∫ b

a
f (x)dx is approximated by each of the following

Rn = f (x1)∆x + f (x2)∆x + ... + f (xn)∆x

Ln = f (x0)∆x + f (x1)∆x + ...+ f (xn−1)∆x

Mn = f (
1

2
(x0 + x1))∆x + f (

1

2
(x1 + x2))∆x + ...+ f (

1

2
(xn−1 + xn))∆x
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Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and
b and of height h is

A =
1

2
(a + b)h

When we use trapezoids to approximate the area under the curve, we
get

Tn =
1

2
∆x(f (x0) + 2f (x1) + 2f (x2) + ... + 2f (xn−1) + f (xn))
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Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and
b and of height h is

A =
1

2
(a + b)h

When we use trapezoids to approximate the area under the curve, we
get

Tn =
1

2
∆x(f (x0) + 2f (x1) + 2f (x2) + ... + 2f (xn−1) + f (xn))

Example Show Tn is the average of Ln and Rn
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Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and
b and of height h is

A =
1

2
(a + b)h

When we use trapezoids to approximate the area under the curve, we
get

Tn =
1

2
∆x(f (x0) + 2f (x1) + 2f (x2) + ... + 2f (xn−1) + f (xn))

Example Show Tn is the average of Ln and Rn

Example Find T4 for
∫ 1

0
x2dx
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Simpson’s Rule

First, find a useful formula for the area under the parabola
Ax2 + Bx + C from x = −h to x = h.
We can use this to show that

Sn =
1

3
∆x(f (x0) + 4f (x1) + 2f (x2) + 4f (x3) + ...

...+ 2f (xn−2) + 4f (xn−1) + f (xn))

is an approximation of
∫ b

a
f (x)dx .
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is an approximation of
∫ b
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Example Find S4 for
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0
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Improper Integrals

Improper integrals

Definite integrals

∫ b

a

f (x)dx are required to have

finite domain of integration [a, b]

finite integrand (i.e. f (x) < ±∞)
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Improper Integrals

Improper integrals

Definite integrals

∫ b

a

f (x)dx are required to have

finite domain of integration [a, b]

finite integrand (i.e. f (x) < ±∞)

Improper integrals

1 Infinite domains of integration
2 Integrands with vertical asymptotes (i.e. with infinite

discontinuity)
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Improper Integrals

Infinite limits of integration

Definition
∫

∞

a

f (x)dx = limt→∞

∫ t

a

f (x)dx

∫

∞

−∞

f (x)dx = lims→−∞

∫ a

s

f (x)dx + limt→∞

∫ t

a

f (x)dx
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Improper Integrals

Infinite limits of integration

Definition
∫

∞

a

f (x)dx = limt→∞

∫ t

a

f (x)dx

∫

∞

−∞

f (x)dx = lims→−∞

∫ a

s

f (x)dx + limt→∞

∫ t

a

f (x)dx

If as a limit the improper integral is finite we say the integral
converges, while if the limit is infinite or does not exist, we say the
integral diverges.

Convergence is good (means we can do the integral); divergence is
bad (means we can’t do the integral).
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Improper Integrals

Example 1

Find
∫

∞

0

e−x dx .

(if it even converges)
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Improper Integrals

Example 2

Find
∫

∞

−∞

1

1 + x2
dx .

(if it even converges)
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Improper Integrals

Example 3, the p-test

The integral
∫

∞

1

1

xp
dx

1 Converges if p > 1;

2 Diverges if p ≤ 1.
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Improper Integrals

Example 4

Find
∫ 2

0

2x

x2 − 4
dx .

(if it converges)
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Improper Integrals

Example 4

Find
∫ 2

0

2x

x2 − 4
dx .

(if it converges)

If f (x) has a discontinuity at b, then

∫ b

a

f (x)dx = limt→b−

∫ t

a

f (x)dx
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Improper Integrals

Example 5

Find

∫ 3

0

1

(x − 1)2/3
dx , if it converges.

Solution:
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Improper Integrals

Example 5

Find

∫ 3

0

1

(x − 1)2/3
dx , if it converges.

Solution: We might think just to do

∫ 3

0

1

(x − 1)2/3
dx =

[

3(x − 1)1/3
]3

0
,
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Improper Integrals

Example 5

Find

∫ 3

0

1

(x − 1)2/3
dx , if it converges.

Solution: We might think just to do

∫ 3

0

1

(x − 1)2/3
dx =

[

3(x − 1)1/3
]3

0
,

but this is not okay!
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Improper Integrals

Tests for convergence and divergence

The gist:
1 If you’re smaller than something that converges, then you

converge.
2 If you’re bigger than something that diverges, then you diverge.
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Improper Integrals

Tests for convergence and divergence

The gist:
1 If you’re smaller than something that converges, then you

converge.
2 If you’re bigger than something that diverges, then you diverge.

Theorem

Let f and g be continuous on [a,∞) with 0 ≤ f (x) ≤ g(x) for all
x ≥ a. Then

1

∫

∞

a
f (x) dx converges if

∫

∞

a
g(x) dx converges.

2

∫

∞

a
g(x) dx diverges if

∫

∞

a
f (x) dx diverges.
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Improper Integrals

Example 6

Which of the following integrals converge?

(a)

∫

∞

1

e−x2 dx , (b)

∫

∞

1

sin2(x)

x2
dx .

(c)

∫

∞

0

tan−1(x)

2 + ex
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