Math 123: Approximate Integration II

Ryan Blair
CSU Long Beach

Thursday February 4, 2016

Outline

(1) Improper Integrals

Review From Last Time

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x \\
M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x
\end{gathered}
$$

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example Show T_{n} is the average of L_{n} and R_{n}

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example Show T_{n} is the average of L_{n} and R_{n} Example Find T_{4} for $\int_{0}^{1} x^{2} d x$

Simpson's Rule

First, find a useful formula for the area under the parabola $A x^{2}+B x+C$ from $x=-h$ to $x=h$.
We can use this to show that

$$
\begin{gathered}
S_{n}=\frac{1}{3} \Delta x\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots\right. \\
\left.\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{gathered}
$$

is an approximation of $\int_{a}^{b} f(x) d x$.

Simpson's Rule

First, find a useful formula for the area under the parabola $A x^{2}+B x+C$ from $x=-h$ to $x=h$.
We can use this to show that

$$
\begin{gathered}
S_{n}=\frac{1}{3} \Delta x\left(f\left(x_{0}\right)+4 f\left(x_{1}\right)+2 f\left(x_{2}\right)+4 f\left(x_{3}\right)+\ldots\right. \\
\left.\ldots+2 f\left(x_{n-2}\right)+4 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
\end{gathered}
$$

is an approximation of $\int_{a}^{b} f(x) d x$.
Example Find S_{4} for $\int_{0}^{1} x^{2} d x$

Improper integrals

Definite integrals $\int_{a}^{b} f(x) d x$ are required to have

- finite domain of integration $[a, b]$
- finite integrand (i.e. $f(x)< \pm \infty$)

Improper integrals

Definite integrals $\int_{a}^{b} f(x) d x$ are required to have

- finite domain of integration $[a, b]$
- finite integrand (i.e. $f(x)< \pm \infty$)

Improper integrals

(1) Infinite domains of integration
(2) Integrands with vertical asymptotes (i.e. with infinite discontinuity)

Infinite limits of integration

Definition

$$
\begin{gathered}
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x \\
\int_{-\infty}^{\infty} f(x) d x=\lim _{s \rightarrow-\infty} \int_{s}^{a} f(x) d x+\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
\end{gathered}
$$

Infinite limits of integration

Definition

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

$$
\int_{-\infty}^{\infty} f(x) d x=\lim _{s \rightarrow-\infty} \int_{s}^{a} f(x) d x+\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

If as a limit the improper integral is finite we say the integral converges, while if the limit is infinite or does not exist, we say the integral diverges.

Convergence is good (means we can do the integral); divergence is bad (means we can't do the integral).

Example 1

Find

$$
\int_{0}^{\infty} e^{-x} d x
$$

(if it even converges)

Example 2

Find

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x .
$$

(if it even converges)

Example 3, the p-test

The integral

$$
\int_{1}^{\infty} \frac{1}{x^{p}} d x
$$

(1) Converges if $p>1$;
(2) Diverges if $p \leq 1$.

Example 4

Find

$$
\int_{0}^{2} \frac{2 x}{x^{2}-4} d x
$$

(if it converges)

Example 4

Find

$$
\int_{0}^{2} \frac{2 x}{x^{2}-4} d x
$$

(if it converges)
If $f(x)$ has a discontinuity at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

Example 5

$$
\text { Find } \int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x, \quad \text { if it converges. }
$$

Solution:

Example 5

$$
\text { Find } \int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x, \quad \text { if it converges. }
$$

Solution: We might think just to do

$$
\int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x=\left[3(x-1)^{1 / 3}\right]_{0}^{3},
$$

Example 5

$$
\text { Find } \int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x \text {, if it converges. }
$$

Solution: We might think just to do

$$
\int_{0}^{3} \frac{1}{(x-1)^{2 / 3}} d x=\left[3(x-1)^{1 / 3}\right]_{0}^{3},
$$

but this is not okay!

Tests for convergence and divergence

The gist:
(1) If you're smaller than something that converges, then you converge.
(2) If you're bigger than something that diverges, then you diverge.

Tests for convergence and divergence

The gist:
(1) If you're smaller than something that converges, then you converge.
(2) If you're bigger than something that diverges, then you diverge.

Theorem

Let f and g be continuous on $[a, \infty)$ with $0 \leq f(x) \leq g(x)$ for all $x \geq a$. Then
(1) $\int_{a}^{\infty} f(x) d x$ converges if $\int_{a}^{\infty} g(x) d x$ converges.
(2) $\int_{a}^{\infty} g(x) d x$ diverges if $\int_{a}^{\infty} f(x) d x$ diverges.

Example 6

Which of the following integrals converge?

$$
\begin{aligned}
& \text { (a) } \int_{1}^{\infty} e^{-x^{2}} d x, \quad \text { (b) } \int_{1}^{\infty} \frac{\sin ^{2}(x)}{x^{2}} d x \\
& \text { (c) } \int_{0}^{\infty} \frac{\tan ^{-1}(x)}{2+e^{x}}
\end{aligned}
$$

