Math 123: Approximate Integration

Ryan Blair
CSU Long Beach

Tuesday February 2, 2016

Outline

(1) Quick Review of Partial Fraction Expansion
(2) Approximating Definite Integrals

Steps of Partial Fraction Expansion

When $p(x)$ and $q(x)$ are polynomials, we want to find

$$
\int \frac{p(x)}{q(x)} d x
$$

Steps of Partial Fraction Expansion

When $p(x)$ and $q(x)$ are polynomials, we want to find

$$
\int \frac{p(x)}{q(x)} d x
$$

Step 1: If $\operatorname{deg}(p(x)) \geq \operatorname{deg}(q(x))$, then divide.

Steps of Partial Fraction Expansion

When $p(x)$ and $q(x)$ are polynomials, we want to find

$$
\int \frac{p(x)}{q(x)} d x
$$

Step 1: If $\operatorname{deg}(p(x)) \geq \operatorname{deg}(q(x))$, then divide.
Step 2: Factor the denominator (sometimes this is quite hard)

Steps of Partial Fraction Expansion

When $p(x)$ and $q(x)$ are polynomials, we want to find

$$
\int \frac{p(x)}{q(x)} d x
$$

Step 1: If $\operatorname{deg}(p(x)) \geq \operatorname{deg}(q(x))$, then divide.
Step 2: Factor the denominator (sometimes this is quite hard) Example Find $\int \frac{1}{x^{3}-x} d x$

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization
Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization
Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$
Case 1: $q(x)$ is the product of distinct linear factors

$$
q(x)=\left(a_{1} x+b_{1}\right)\left(a_{2} x+b_{1}\right) \ldots\left(a_{k} x+b_{k}\right)
$$

In this case we let

$$
\frac{p(x)}{q(x)}=\frac{A_{1}}{\left(a_{1} x+b_{1}\right)}+\frac{A_{2}}{\left(a_{2} x+b_{1}\right)}+\ldots+\frac{A_{k}}{\left(a_{k} x+b_{k}\right)}
$$

and we solve algebraically for $A_{1}, A_{2}, \ldots, A_{k}$.
Example Find $\int \frac{1}{x^{3}-x} d x$

Definition

(Definite Integral)If f is a function defined for $a \leq x \leq b$, we divide the interval $[a, b]$ into n subintervals of equal width $\Delta x=\frac{b-a}{n}$. We let $x_{0}(=a), x_{1}, x_{2}, \ldots, x_{n}(=b)$ be the endpoints of these subintervals and we let $x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}$ be any sample points in these subintervals. Then the definite integral of f from a to b is

$$
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x
$$

provided that this limit exists. If it does exist, we say that f is integrable on $[a, b]$.

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

$$
M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x
$$

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

$M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x$
Example Find R_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

$M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x$
Example Find R_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)
Example Find L_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)

Picking Sample points and Approx. Integrals

$\int_{a}^{b} f(x) d x$ is approximated by each of the following

$$
\begin{gathered}
R_{n}=f\left(x_{1}\right) \Delta x+f\left(x_{2}\right) \Delta x+\ldots+f\left(x_{n}\right) \Delta x \\
L_{n}=f\left(x_{0}\right) \Delta x+f\left(x_{1}\right) \Delta x+\ldots+f\left(x_{n-1}\right) \Delta x
\end{gathered}
$$

$M_{n}=f\left(\frac{1}{2}\left(x_{0}+x_{1}\right)\right) \Delta x+f\left(\frac{1}{2}\left(x_{1}+x_{2}\right)\right) \Delta x+\ldots+f\left(\frac{1}{2}\left(x_{n-1}+x_{n}\right)\right) \Delta x$
Example Find R_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)
Example Find L_{4} for $\int_{0}^{1} x^{2} d x$ (is this an under estimate or an over estimate?)
Example Find M_{4} for $\int_{1}^{2} e^{x^{2}} d x$ (is this an under estimate or an over estimate?)

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example Show T_{n} is the average of L_{n} and R_{n}

Approximating by Trapezoids

Recall that the area of a trapezoid with parallel sides of length a and b and of height h is

$$
A=\frac{1}{2}(a+b) h
$$

When we use trapezoids to approximate the area under the curve, we get

$$
T_{n}=\frac{1}{2} \Delta x\left(f\left(x_{0}\right)+2 f\left(x_{1}\right)+2 f\left(x_{2}\right)+\ldots+2 f\left(x_{n-1}\right)+f\left(x_{n}\right)\right)
$$

Example Show T_{n} is the average of L_{n} and R_{n} Example Find T_{4} for $\int_{0}^{1} x^{2} d x$

