Math 123: Trig Integrals and Trig Substitution

Ryan Blair

CSU Long Beach

Tuesday January 26, 2016

Outline

(1) Trig Integrals

(2) Trig Substitution

How do we integrate Trigonometric functions?

Example: $\int \sin (x) d x$ and $\int \cos (x) d x$.

How do we integrate Trigonometric functions?

Example: $\int \sin (x) d x$ and $\int \cos (x) d x$. Example: $\int \sin ^{3}(x) d x$

How do we integrate Trigonometric functions?

Example: $\int \sin (x) d x$ and $\int \cos (x) d x$. Example: $\int \sin ^{3}(x) d x$

$$
\begin{aligned}
& \text { For } \int \cos ^{\text {odd }}(x) d x \text { or } \int \sin ^{\text {odd }}(x) d x \text { use } \\
& \qquad \cos ^{2}(x)+\sin ^{2}(x)=1
\end{aligned}
$$

and u-substitution

How do we integrate Trigonometric functions?

Example: $\int \sin (x) d x$ and $\int \cos (x) d x$.
Example: $\int \sin ^{3}(x) d x$
For $\int \cos ^{\text {odd }}(x) d x$ or $\int \sin ^{\text {odd }}(x) d x$ use

$$
\cos ^{2}(x)+\sin ^{2}(x)=1
$$

and u-substitution
Example: $\int \cos ^{5}(x) d x$

How do we integrate Trigonometric functions?

Example: $\int \sin ^{2}(x) d x$

How do we integrate Trigonometric functions?

Example: $\int \sin ^{2}(x) d x$
For $\int \cos ^{e v e n}(x) d x$ or $\int \sin ^{\text {even }}(x) d x$ use

$$
\begin{aligned}
& \cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x)) \\
& \sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))
\end{aligned}
$$

possibly multiple times

How do we integrate Trigonometric functions?

Example: $\int \sin ^{2}(x) d x$
For $\int \cos ^{\text {even }}(x) d x$ or $\int \sin ^{\text {even }}(x) d x$ use

$$
\begin{aligned}
& \cos ^{2}(x)=\frac{1}{2}(1+\cos (2 x)) \\
& \sin ^{2}(x)=\frac{1}{2}(1-\cos (2 x))
\end{aligned}
$$

possibly multiple times
Example: $\int \cos ^{4}(x) d x$

How do we integrate Trigonometric functions?

Example: $\int \sin ^{2}(x) \cos ^{3}(x) d x$.

How do we integrate Trigonometric functions?

Example: $\int \sin ^{2}(x) \cos ^{3}(x) d x$.
For $\int \sin ^{\text {anything }}(x) \cos ^{\text {odd }}(x) d x$ or $\int \cos ^{\text {anything }}(x) \sin ^{\text {odd }}(x) d x$ use

$$
\cos ^{2}(x)+\sin ^{2}(x)=1
$$

and u-substitution

How do we integrate Trigonometric functions?

Example: $\int \sin ^{2}(x) \cos ^{3}(x) d x$.
For $\int \sin ^{\text {anything }}(x) \cos ^{\text {odd }}(x) d x$ or $\int \cos ^{\text {anything }}(x) \sin ^{\text {odd }}(x) d x$ use

$$
\cos ^{2}(x)+\sin ^{2}(x)=1
$$

and u-substitution
Question: What about $\int \sin ^{\text {even }}(x) \cos ^{\text {even }}(x) d x$

How do we integrate Trigonometric functions?

Example: $\int \tan (x) \sec ^{4}(x) d x$.

How do we integrate Trigonometric functions?

Example: $\int \tan (x) \sec ^{4}(x) d x$.
For integrals involving $\tan (x)$ and $\sec (x)$ use

$$
1+\tan ^{2}(x)=\sec ^{2}(x)
$$

and u-substitution.

Some Challenges

Example: Find $\int \sec (x) d x$. Example: Find $\int \sec ^{3}(x) d x$.

A Motivating Example

Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ in two different ways.
Method One: Geometric.

Method Two: Using Trigonometric identities.

A Motivating Example

Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ in two different ways.
Method One: Geometric. Since $y=\sqrt{1-x^{2}}$ is the top half of the unit circle, use definition of integral as area under the curve.

Method Two: Using Trigonometric identities.

A Motivating Example

Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ in two different ways.
Method One: Geometric. Since $y=\sqrt{1-x^{2}}$ is the top half of the unit circle, use definition of integral as area under the curve.

Method Two: Using Trigonometric identities. Make the substitution $x=\sin (\theta)$ and use $\cos ^{2}(\theta)+\sin ^{2}(\theta)=1$.

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Method Three: Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ by building the relevant right triangle and making a substitution.

Trig Substitution

For integrals involving $\sqrt{a^{2}-x^{2}}, \sqrt{x^{2}-a^{2}}$ or $\sqrt{x^{2}+a^{2}}$ where a is a constant, we can often integrate by constructing a right triangle with one of these values as a side length.

Method Three: Find $\int_{-1}^{1} \sqrt{1-x^{2}} d x$ by building the relevant right triangle and making a substitution.

Example:Find $\int \frac{1}{x^{2} \sqrt{x^{2}+9}}$
Example:Find $\int \frac{1}{\sqrt{x^{2}-4}}$

