Math 123: Volumes and Arc Length

Ryan Blair

CSU Long Beach

Tuesday September 20, 2016

Outline

(1) Volumes of Rotation

(2) Arc Length

Volumes of solids of rotation

Replace all x 's with y 's in the following formulas to get other valid expressions for volume.

Disks:

Vol $=\int_{a}^{b} \pi(\text { radius in terms of } x)^{2} d x$

Shells:

Vol $=\int_{a}^{b} 2 \pi($ radius in terms of $x)($ height in terms of $x) d x$

Washers:

$\mathrm{Vol}=$
$\int_{a}^{b} \pi(\text { outer radius in terms of } x)^{2}-\pi(\text { inner radius in terms of } x)^{2} d x$

Volumes of solids of rotation

Replace all x 's with y 's in the following formulas to get other valid expressions for volume.
Disks:
Vol $=\int_{a}^{b} \pi(\text { radius in terms of } x)^{2} d x$
Shells:
Vol $=\int_{a}^{b} 2 \pi($ radius in terms of x$)($ height in terms of x$) d x$

Washers:

$\mathrm{Vol}=$
$\int_{a}^{b} \pi(\text { outer radius in terms of } \mathrm{x})^{2}-\pi(\text { inner radius in terms of } \mathrm{x})^{2} d x$
Exercise: Find the volume of the object obtained by rotating the region bounded by the curves $y=\cos (x)+1, y=0$ and $x=0$ that contains $(1,1)$ about the x-axis.

Volumes of solids of rotation

Replace all x 's with y 's in the following formulas to get other valid expressions for volume.
Disks:
Vol $=\int_{a}^{b} \pi(\text { radius in terms of } x)^{2} d x$
Shells:
Vol $=\int_{a}^{b} 2 \pi($ radius in terms of x$)($ height in terms of x$) d x$

Washers:

Vol =
$\int_{a}^{b} \pi(\text { outer radius in terms of } \mathrm{x})^{2}-\pi(\text { inner radius in terms of } \mathrm{x})^{2} d x$
Exercise: Find the volume of the object obtained by rotating the region bounded by the curves $y=\cos (x)+1, y=0$ and $x=0$ that contains $(1,1)$ about the y-axis.

The length of a curve

Lets find the length of a curve by approximating by line segments.

The length of a curve

Lets find the length of a curve by approximating by line segments.
If f is continuous on the interval $[a, b]$, then the length of the graph of f from a to b is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}}
$$

The length of a curve

Lets find the length of a curve by approximating by line segments.
If f is continuous on the interval $[a, b]$, then the length of the graph of f from a to b is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}}
$$

Example: Find circumference of the circle $x^{2}+y^{2}=4$.

The length of a curve

Lets find the length of a curve by approximating by line segments.
If f is continuous on the interval $[a, b]$, then the length of the graph of f from a to b is

$$
L=\int_{a}^{b} \sqrt{1+\left(f^{\prime}(x)\right)^{2}}
$$

Example: Find circumference of the circle $x^{2}+y^{2}=4$. Example: Find the length of the curve $y=\ln (\cos (x))$ between $x=0$ and $x=\frac{\pi}{3}$

