Math 123: Partial Fraction Expansion

Ryan Blair

CSU Long Beach

Thursday September 1, 2016

Outline

1 Partial Fraction Expansion

2 / 7

Making Hard Integrals Easy

Here is an easy integral

$$\int \frac{1}{x-3} + \frac{2}{x-4} dx$$

Here is a hard integral

$$\int \frac{3x-10}{x^2-7x+12} dx$$

Making Hard Integrals Easy

Here is an easy integral

$$\int \frac{1}{x-3} + \frac{2}{x-4} dx$$

Here is a hard integral

$$\int \frac{3x-10}{x^2-7x+12} dx$$

But, these are algebraically the SAME!

Making Hard Integrals Easy

Here is an easy integral

$$\int \frac{1}{x-3} + \frac{2}{x-4} dx$$

Here is a hard integral

$$\int \frac{3x-10}{x^2-7x+12} dx$$

But, these are algebraically the SAME!

Key Idea: The method of partial fractions expresses rational functions $\frac{p(x)}{a(x)}$ as the sum of simple fractions that we can integrate.

Steps of Partial Fraction Expansion

When p(x) and q(x) are polynomials, we want to find

$$\int \frac{p(x)}{q(x)} dx$$

Steps of Partial Fraction Expansion

When p(x) and q(x) are polynomials, we want to find

$$\int \frac{p(x)}{q(x)} dx$$

Step 1: If $deg(p(x)) \ge deg(q(x))$, then divide.

Example:Find $\int \frac{x^2-4x+2}{x^2-7x+12}$

Steps of Partial Fraction Expansion

When p(x) and q(x) are polynomials, we want to find

$$\int \frac{p(x)}{q(x)} dx$$

Step 1: If $deg(p(x)) \ge deg(q(x))$, then divide.

Example:Find $\int \frac{x^2-4x+2}{x^2-7x+12}$

Step 2: Factor the denominator (sometimes this is quite hard)

Example: Completely factor $x^3 - x$.

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization

Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$

Case 1: q(x) is the product of distinct linear factors

$$q(x) = (a_1x + b_1)(a_2x + b_1)...(a_kx + b_k)$$

In this case we let

$$\frac{p(x)}{q(x)} = \frac{A_1}{(a_1x + b_1)} + \frac{A_2}{(a_2x + b_1)} + \dots + \frac{A_k}{(a_kx + b_k)}$$

and we solve algebraically for $A_1, A_2, ..., A_k$.

Example Find $\int \frac{3x-10}{x^2-7x+12} dx$

When the Denominator has all Distinct Linear Factors

Step 3: Depends on the factorization

Recall we are interested in evaluating $\int \frac{p(x)}{q(x)}$

Case 1: q(x) is the product of distinct linear factors

$$q(x) = (a_1x + b_1)(a_2x + b_1)...(a_kx + b_k)$$

In this case we let

$$\frac{p(x)}{q(x)} = \frac{A_1}{(a_1x + b_1)} + \frac{A_2}{(a_2x + b_1)} + \dots + \frac{A_k}{(a_kx + b_k)}$$

and we solve algebraically for $A_1, A_2, ..., A_k$.

Example Find $\int \frac{3x-10}{x^2-7x+12} dx$

Example Find $\int \frac{1}{x^3-x} dx$

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Key Idea: If (x - a) appears n times in the factorization, we need n fractions on the right, one for each power.

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Key Idea: If (x - a) appears n times in the factorization, we need n fractions on the right, one for each power.

Example:
$$\int \frac{x^2+2}{(x-1)^2(x+2)} dx$$

Step 3: Case 2: q(x) is the product of linear factors, some of which are repeated

Example:

$$\frac{x^2 - 3x + 4}{(x - 2)^2(x + 3)^3} = \frac{A_1}{(x - 2)} + \frac{A_2}{(x - 2)^2} + \frac{A_3}{(x + 3)} + \frac{A_4}{(x + 3)^2} + \frac{A_5}{(x + 3)^3}$$

Key Idea: If (x - a) appears n times in the factorization, we need n fractions on the right, one for each power.

Example:
$$\int \frac{x^2+2}{(x-1)^2(x+2)} dx$$
 Example: $\int \frac{x^2+1}{(x-3)(x-2)^2} dx$

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^2 + 1, 2x^2 - 2x + 4, -3x^2 + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B.

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^2 + 1, 2x^2 - 2x + 4, -3x^2 + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$\frac{x^2 - 3x + 4}{(x^2 + 1)(2x^2 - 2x + 4)} = \frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{(2x^2 - 2x + 4)}$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B.

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^2 + 1, 2x^2 - 2x + 4, -3x^2 + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$\frac{x^2 - 3x + 4}{(x^2 + 1)(2x^2 - 2x + 4)} = \frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{(2x^2 - 2x + 4)}$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B.

Example:
$$\int \frac{1}{(x-1)(x^2+1)} dx$$

Irreducible Quadratics can not be factored into linear factors (over the reals).

$$x^2 + 1, 2x^2 - 2x + 4, -3x^2 + x - 1$$

Question: How do we find a partial fraction expansion if the denominator contains irreducible quadratics

$$\frac{x^2 - 3x + 4}{(x^2 + 1)(2x^2 - 2x + 4)} = \frac{Ax + B}{(x^2 + 1)} + \frac{Cx + D}{(2x^2 - 2x + 4)}$$

Key Idea: For each irreducible quadratic factor we add one fraction to the right with numerator Ax + B.

Example: $\int \frac{1}{(x-1)(x^2+1)} dx$ Example: $\int \frac{x+1}{x^3+4x} dx$