Math 123: Taylor's Formula and Approximations

Ryan Blair

CSU Long Beach

Tuesday November 15, 2016

Outline

(1) Taylor's Formula

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Taylor's Formula

$f(x)=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots+\frac{f^{(n)}(a)}{n!}(x-a)^{n}+R_{n}(x)$
Where $R_{n}(x)$ is the error term of order \mathbf{n}.

Theorem (Taylor's Theorem)

Given a Taylor Series $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$, if there is a constant M such that $\left|f^{(n+1)}(t)\right|<M$ for all t between a and x, then $\left|R_{n}(x)\right|<M \frac{|x-a| n+1}{(n+1)!}$

Examples

(1) Show that the Maclaurin series for $\frac{1}{1-x}$ converges to $\frac{1}{1-x}$ for all $x \in\left[-\frac{1}{2}, \frac{1}{2}\right]$ by finding a formula for $R_{n}(x)$.
(2) Estimate the error for approximating e^{x} on $\left[\frac{-1}{2}, \frac{1}{2}\right]$ using $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$.
(3) Estimate the error for approximating $\cos (x)$ on $[-2 \pi, 2 \pi]$ using $1+\frac{-x^{2}}{2}+\frac{x^{4}}{24}$.

