Math 123: Taylor Series

Ryan Blair

CSU Long Beach

Thursday November 10, 2016

Ryan Blair (CSULB)

Math 123: Taylor Series

(E) < E)</p> Thursday November 10, 2016 1 / 11

590

Ryan Blair (CSULB)

Math 123: Taylor Series

Thursday November 10, 2016 2 / 11

- 2

999

イロト イヨト イヨト イヨト

Using the geometric series

Exercise: Use

$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n$$

to find a power series for $f(x) = \frac{1}{1+x^2}$ and find the interval of convergence.

Ryan Blair (CSULB)

Math 123: Taylor Series

Theorem

If $P(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$, then $P'(x) = \sum_{k=1}^{\infty} k c_k (x-a)^{k-1}$ $\int P(x) dx = C + \sum_{k=0}^{\infty} \frac{c_k}{k+1} (x-a)^{k+1}$

Ryan Blair (CSULB)

Math 123: Taylor Series

Thursday November 10, 2016 4 / 11

Theorem

If $P(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$, then $P'(x) = \sum_{k=1}^{\infty} k c_k (x-a)^{k-1}$ $\int P(x) dx = C + \sum_{k=0}^{\infty} \frac{c_k}{k+1} (x-a)^{k+1}$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^n}{n!}$.

Ryan Blair (CSULB)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ■ ● ● ● ●

Theorem

If $P(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$, then

$${\sf P}'(x)=\Sigma_{k=1}^\infty k c_k (x-a)^{k-1}$$

$$\int P(x)dx = C + \sum_{k=0}^{\infty} \frac{c_k}{k+1}(x-a)^{k+1}$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. **Exercise**: Find the power series for $f(x) = tan^{-1}(x)$.

Ryan Blair (CSULB)

4 / 11

Theorem

If $P(x) = \sum_{k=0}^{\infty} c_k (x-a)^k$, then

$${\sf P}'(x)=\Sigma_{k=1}^\infty k c_k (x-a)^{k-1}$$

$$\int P(x)dx = C + \sum_{k=0}^{\infty} \frac{c_k}{k+1}(x-a)^{k+1}$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^n}{n!}$. **Exercise**: Find the power series for $f(x) = tan^{-1}(x)$. **Exercise**: Find the power series for f(x) = ln(1+x).

Ryan Blair (CSULB)

4 / 11

Power Series Representations of Functions

We have already shown

$$e^{x} = \sum_{k=0}^{\infty} \frac{x^{k}}{k!} = 1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6} + \dots$$
$$\frac{1}{1-x} = \sum_{n=0}^{\infty} x^{k} = 1 + x + x^{2} + x^{3} + \dots$$

Question: How do we find a power series representation for a general function.

Question: How is the sequence of partial sums of the power series related to the function.

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

• e^{x} • 1 • 1 + x• $1 + x + \frac{x^2}{2}$ • $1 + x + \frac{x^2}{2} + \frac{x^3}{6}$

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

• e^{x} • 1 • 1 + x• $1 + x + \frac{x^{2}}{2}$ • $1 + x + \frac{x^{2}}{2} + \frac{x^{3}}{6}$

Core Idea: A power series representation is the LIMIT of successively better polynomial approximations!

Taylor Series

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Taylor Series

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

Taylor Series

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ **Exercise:** Verify that the Taylor series of sin(x) at x = 0 is $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

Definition

The **Taylor series** generated by a function f at x = a is $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(a) + f'(a)(x-a) + \frac{f''(a)}{2} (x-a)^2 + \dots$

Exercise: Verify that the Taylor series of e^x at x = 0 is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$ **Exercise:** Verify that the Taylor series of sin(x) at x = 0 is $\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$

Theorem

If
$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k$$
 has radius of convergence R, then

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x-a)^k = f(x)$$

for all x in (a - R, a + R)

Problem: Find the Taylor series for f(x) = ln(x+1) at x = 0.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Problem: Find the Taylor series for f(x) = ln(x+1) at x = 0.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Answer: $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k}$

Problem: Find the Taylor series for f(x) = ln(x) at x = 1.

Trick: Save yourself time and use the Taylor Series we just found.

Problem: Find the Taylor series for f(x) = ln(x) at x = 1.

Trick: Save yourself time and use the Taylor Series we just found.

Answer: $\sum_{k=1}^{\infty} (-1)^{k-1} \frac{(x-1)^k}{k}$

Ryan Blair (CSULB)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Problem: Find the first 3 terms of the Taylor series for f(x) = xsin(3x) at x = 0.

Trick: Use the fact that you know that Taylor Series for sin(x).

Ryan Blair (CSULB)

Math 123: Taylor Series

Problem: Find the first 3 terms of the Taylor series for $f(x) = e^x sin(x)$ at x = 0.

Trick: Use the fact that you know that Taylor Series for sin(x) and you know the Taylor Series for e^x .