Math 123: Taylor Series

Ryan Blair

CSU Long Beach

Thursday November 10, 2016

Outline

(1) Operations on Power Series

(2) Taylor Series

Using the geometric series

Exercise: Use

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

to find a power series for $f(x)=\frac{1}{1+x^{2}}$ and find the interval of convergence.

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$. Exercise: Find the power series for $f(x)=\tan ^{-1}(x)$.

Derivatives and Integrals of Series

Theorem
If $P(x)=\sum_{k=0}^{\infty} c_{k}(x-a)^{k}$, then

$$
\begin{gathered}
P^{\prime}(x)=\sum_{k=1}^{\infty} k c_{k}(x-a)^{k-1} \\
\int P(x) d x=C+\sum_{k=0}^{\infty} \frac{c_{k}}{k+1}(x-a)^{k+1}
\end{gathered}
$$

Exercise: Find the derivative of $\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$.
Exercise: Find the power series for $f(x)=\tan ^{-1}(x)$. Exercise: Find the power series for $f(x)=\ln (1+x)$.

Power Series Representations of Functions

We have already shown

$$
\begin{aligned}
& e^{x}=\sum_{k=0}^{\infty} \frac{x^{k}}{k!}=1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}+\ldots \\
& \frac{1}{1-x}=\sum_{n=0}^{\infty} x^{k}=1+x+x^{2}+x^{3}+\ldots
\end{aligned}
$$

Question: How do we find a power series representation for a general function.

Question: How is the sequence of partial sums of the power series related to the function.

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

- e^{x}
- 1
- $1+x$
- $1+x+\frac{x^{2}}{2}$
- $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$

Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

- e^{x}
- 1
- $1+x$
- $1+x+\frac{x^{2}}{2}$
- $1+x+\frac{x^{2}}{2}+\frac{x^{3}}{6}$

Core Idea: A power series representation is the LIMIT of successively better polynomial approximations!

Taylor Series

Definition

The Taylor series generated by a function f at $x=a$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots
$$

Taylor Series

Definition

The Taylor series generated by a function f at $x=a$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots
$$

Exercise: Verify that the Taylor series of e^{x} at $x=0$ is $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$

Taylor Series

Definition

The Taylor series generated by a function f at $x=a$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots
$$

Exercise: Verify that the Taylor series of e^{x} at $x=0$ is $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ Exercise: Verify that the Taylor series of $\sin (x)$ at $x=0$ is $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$

Taylor Series

Definition

The Taylor series generated by a function f at $x=a$ is

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(a)+f^{\prime}(a)(x-a)+\frac{f^{\prime \prime}(a)}{2}(x-a)^{2}+\ldots
$$

Exercise: Verify that the Taylor series of e^{x} at $x=0$ is $\sum_{k=0}^{\infty} \frac{x^{k}}{k!}$ Exercise: Verify that the Taylor series of $\sin (x)$ at $x=0$ is $\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{2 k+1}}{(2 k+1)!}$

Theorem
If $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}$ has radius of convergence R, then

$$
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!}(x-a)^{k}=f(x)
$$

for all x in $(a-R, a+R)$

Tricks to finding Taylor Series

Problem: Find the Taylor series for $f(x)=\ln (x+1)$ at $x=0$.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Tricks to finding Taylor Series

Problem: Find the Taylor series for $f(x)=\ln (x+1)$ at $x=0$.

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Answer: $\sum_{k=1}^{\infty}(-1)^{k-1} \frac{x^{k}}{k}$

Tricks to finding Taylor Series

Problem: Find the Taylor series for $f(x)=\ln (x)$ at $x=1$.

Trick: Save yourself time and use the Taylor Series we just found.

Tricks to finding Taylor Series

Problem: Find the Taylor series for $f(x)=\ln (x)$ at $x=1$.

Trick: Save yourself time and use the Taylor Series we just found.

Answer: $\sum_{k=1}^{\infty}(-1)^{k-1} \frac{(x-1)^{k}}{k}$

Tricks to finding Taylor Series

Problem: Find the first 3 terms of the Taylor series for $f(x)=x \sin (3 x)$ at $x=0$.

Trick: Use the fact that you know that Taylor Series for $\sin (x)$.

Tricks to finding Taylor Series

Problem: Find the first 3 terms of the Taylor series for $f(x)=e^{x} \sin (x)$ at $x=0$.

Trick: Use the fact that you know that Taylor Series for $\sin (x)$ and you know the Taylor Series for e^{x}.

