Math 123: First Order D.E.s and Slope Fields

Ryan Blair

CSU Long Beach

Thursday October 6, 2016

Outline

First Order Differential Equations

Slope Fields

Types of Differential equations

Definition

A differential equation is any equation involving a function, its derivatives.

Definition

If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an **nth order** differential equation.

Definition

A first order differential equation $\frac{dy}{dx} = F(x, y)$ together with and initial condition y(a) = b is an initial value problem

Types of Differential equations

Definition

A differential equation is any equation involving a function, its derivatives.

Definition

If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an **nth order** differential equation.

Definition

A first order differential equation $\frac{dy}{dx} = F(x, y)$ together with and initial condition y(a) = b is an initial value problem

Example: Solve the initial value problem $y' = \frac{1}{2}y$ and y(0) = 2

Types of Differential equations

Definition

A differential equation is any equation involving a function, its derivatives.

Definition

If the n-th derivative is the largest derivative that appears in the differential equation, we say it is an **nth order** differential equation.

Definition

A first order differential equation $\frac{dy}{dx} = F(x, y)$ together with and initial condition y(a) = b is an initial value problem

Example: Solve the initial value problem $y' = \frac{1}{2}y$ and y(0) = 2

Example: Solve the initial value problem $\frac{dy}{dx} = \frac{xe^x}{\cos(y)}$ and y(0) = 0

Definition

Given a first order D.E. $\frac{dy}{dx} = F(x, y)$ a **slope field** is a function that assigns the slope F(x, y) to each point in the plane.

Definition

Given a first order D.E. $\frac{dy}{dx} = F(x, y)$ a **slope field** is a function that assigns the slope F(x, y) to each point in the plane.

Example: Sketch the slope field for y' = (y - 1)(y - 3).

Definition

Given a first order D.E. $\frac{dy}{dx} = F(x, y)$ a **slope field** is a function that assigns the slope F(x, y) to each point in the plane.

Example: Sketch the slope field for y' = (y - 1)(y - 3).

Example: Sketch the solution for the IVP y' = (y-1)(y-3) and

y(0) = 2. What about y(0) = 0.

Definition

Given a first order D.E. $\frac{dy}{dx} = F(x, y)$ a **slope field** is a function that assigns the slope F(x, y) to each point in the plane.

Example: Sketch the slope field for y' = (y - 1)(y - 3).

Example: Sketch the solution for the IVP y' = (y-1)(y-3) and

y(0) = 2. What about y(0) = 0.

Example: Find $\lim_{x\to\infty} y(x)$ if y(x) is a solution to the IVP

y' = (y - 1)(y - 3) and y(0) = 0.

Slope Fields Using Dfield

Here we will be using the free internet software Dfield.

Example: Determine the limits as x goes to infinity for solutions to $y' = (\frac{1}{2}y(5-y))$ (A Verhulst Equation).

Example: Determine the initial values for which solutions to

 $y' = x^2 + y^2 - 4$ are always increasing.