Math 123: Sequences

Ryan Blair

CSU Long Beach

Tuesday October 18, 2016

Ryan Blair (CSULB)

Math 123: Sequences

Tuesday October 18, 2016 1 / 10

E

590

イロト イポト イヨト イヨト

Ryan Blair (CSULB)

Math 123: Sequences

Tuesday October 18, 2016 2 / 10

996

Definition

A **sequence** is an ordered set of real numbers, equivalently, a **sequence** is an function from the positive integers to the real numbers.

Definition

A **sequence** is an ordered set of real numbers, equivalently, a **sequence** is an function from the positive integers to the real numbers.

We denote the terms of a sequence by $a_1, a_2, a_3, a_4, ...$ and the **general** term or the **n-th** term of a sequence is labeled a_n .

Presentation of Sequences

A sequence may be given as a formula

$$a_n=\frac{n}{n+1}$$

or as a recursive definition

$$a_1 = 1, a_2 = 1, a_n = a_{n-1} + a_{n-2}$$

Ryan Blair (CSULB)

Sac

イロト 不得下 イヨト イヨト 二日

Limits of Sequences

Thinking of a sequence as a function $f:\mathbb{Z}^+\to\mathbb{R}$ we can take a limit $\lim_{n\to\infty}a_n=L$

Limits of Sequences

Thinking of a sequence as a function $f:\mathbb{Z}^+\to\mathbb{R}$ we can take a limit $\lim_{n\to\infty}a_n=L$

Theorem

If $f : \mathbb{R} \to \mathbb{R}$, $f(n) = a_n$ for all $n \in \mathbb{Z}^+$ and $\lim_{x \to \infty} f(x) = L$, then $\lim_{n \to \infty} a_n = L$

Limits of Sequences

Thinking of a sequence as a function $f:\mathbb{Z}^+\to\mathbb{R}$ we can take a limit $\lim_{n\to\infty}a_n=L$

Theorem

If $f : \mathbb{R} \to \mathbb{R}$, $f(n) = a_n$ for all $n \in \mathbb{Z}^+$ and $\lim_{x \to \infty} f(x) = L$, then $\lim_{n \to \infty} a_n = L$

Exercise:Find $\lim_{n\to\infty} \frac{n}{n+1}$ **Exercise:**Find $\lim_{n\to\infty} \frac{n^2}{e^n}$

Operations with Limits

```
If a_n \rightarrow a and b_n \rightarrow b, then

a_n \pm b_n \rightarrow a \pm b

ca_n \rightarrow ca

a_n \times b_n \rightarrow a \times b

\frac{a_n}{b_n} \rightarrow \frac{a}{b}
```

Operations with Limits

```
If a_n \rightarrow a and b_n \rightarrow b, then

a_n \pm b_n \rightarrow a \pm b

ca_n \rightarrow ca

a_n \times b_n \rightarrow a \times b

\frac{a_n}{b_n} \rightarrow \frac{a}{b}
```

Theorem

(Squeeze) Given sequences a_n , b_n and c_n such that $a_n \leq b_n \leq c_n$ for all n and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then

$$lim_{n o \infty} b_n = L$$

Ryan Blair (CSULB)

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Operations with Limits

If
$$a_n \rightarrow a$$
 and $b_n \rightarrow b$, then
 $a_n \pm b_n \rightarrow a \pm b$
 $ca_n \rightarrow ca$
 $a_n \times b_n \rightarrow a \times b$
 $\frac{a_n}{b_n} \rightarrow \frac{a}{b}$

Theorem

(Squeeze) Given sequences a_n , b_n and c_n such that $a_n \leq b_n \leq c_n$ for all n and $\lim_{n\to\infty} a_n = \lim_{n\to\infty} c_n = L$, then

$$lim_{n\to\infty}b_n=L$$

Exercise: Find $\lim_{n\to\infty} \frac{\sin(n)}{n}$ **Exercise:** Find $\lim_{n\to\infty} \frac{n!}{n^n}$

Convergence and Divergence

If $\lim_{n\to\infty} a_n$ does not exist or is infinite we say it **diverges**.

Examples of sequences that diverge

$$a_n = (-1)^n$$

$$a_n = 2^n$$

Ryan Blair (CSULB)

イロト 不得下 イヨト イヨト 二日

Convergence and Divergence

If $\lim_{n\to\infty} a_n$ does not exist or is infinite we say it **diverges**.

Examples of sequences that diverge

$$a_n = (-1)^n$$

$$a_n = 2^n$$

Exercise: If $r \in \mathbb{R}$, when does $a_n = r^n$ converge and diverge? (this is called a geometric sequence)

Alternating Sequences

An **alternating** sequence is of the form $a_n = (-1)^n b_n$ where $b_n \ge 0$ for all n.

Theorem

Given an alternating sequence a_n , if $\lim_{n\to\infty} |a_n| = 0$ then $\lim_{n\to\infty} a_n = 0$.

Alternating Sequences

An **alternating** sequence is of the form $a_n = (-1)^n b_n$ where $b_n \ge 0$ for all n.

Theorem

Given an alternating sequence a_n , if $\lim_{n\to\infty} |a_n| = 0$ then $\lim_{n\to\infty} a_n = 0$.

Exercise: Prove the above theorem using our limit rules and the squeeze theorem.

Monotonic Sequences

Definition

- A sequence is **increasing** if $a_n \leq a_{n+1}$ for all *n*.
- A sequence is **decreasing** if $a_n \ge a_{n+1}$ for all *n*.
- If a sequence is decreasing or increasing we say it is monotonic.

イロト イポト イヨト イヨト

Monotonic Sequences

Definition

- A sequence is **increasing** if $a_n \leq a_{n+1}$ for all *n*.
- A sequence is **decreasing** if $a_n \ge a_{n+1}$ for all *n*.
- If a sequence is decreasing or increasing we say it is **monotonic**.

Definition

A sequence is **bounded above** if there exists a constant M such that $a_n < M$ for all n.

A sequence is **bounded below** if there exists a constant *m* such that $a_n > m$ for all n.

A sequence is **bounded** if it is both bounded above and bounded below.

9 / 10

Monotonic Sequences

Theorem

Every bounded monotonic sequence converges

Ryan Blair (CSULB)

Math 123: Sequences

Tuesday October 18, 2016 10 / 10

・ 同 ト ・ ヨ ト ・ ヨ ト

E

DQC