Math 123: Constant Coefficient 2nd Order Homogeneous Linear D.E.s

Ryan Blair

CSU Long Beach

Thursday October 13, 2016

Outline

1 Types of D.E.s

2 Solving D.E.s Using Auxiliary Equations

Types of Differential equations

Definition

A second order **linear** D.E. is of the form

$$y'' + P(x)y' + Q(x)y = R(x)$$

If R(x) = 0 we call the D.E. **homogeneous**.

Definition

If P(x) and Q(x) are constants then y'' + P(x)y' + Q(x)y = R(x) is constant coefficient.

Solutions to Homogeneous D.E.s

Theorem

Given a homogeneous linear differential equation with solutions f(x) and g(x) then $a \cdot f(x) + b \cdot g(x)$ is also a solution for any constants a and b.

Solutions to Homogeneous D.E.s

Theorem

Given a homogeneous linear differential equation with solutions f(x) and g(x) then $a \cdot f(x) + b \cdot g(x)$ is also a solution for any constants a and b.

Theorem

Given a 2nd order homogeneous linear differential equation with **linearly independent** solutions f(x) and g(x), then the general solution is $y = C_1 f(x) + C_2 g(x)$ where C_1 and C_2 are constants.

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

What if we guess
$$y = e^{mx}$$
 as a solution to $y'' + y' - 6y = 0$?

What if we guess
$$y = e^{mx}$$
 as a solution to $ay'' + by' + cy = 0$?

Our goal is to solve constant-coefficient, linear, 2nd-order, homogeneous differential equations.

What if we guess $y = e^{mx}$ as a solution to y'' + y' - 6y = 0?

What if we guess $y = e^{mx}$ as a solution to ay'' + by' + cy = 0?

In this case, we get $e^{mx}(am^2 + bm + c) = 0$. There are three possibilities for the roots of a quadratic equation.

Case 1: Distinct Roots

If $am^2 + bm + c$ has distinct roots m_1 and m_2 , then the general solution to ay'' + by' + cy = 0 is

$$y=c_1e^{m_1x}+c_2e^{m_2x}$$

Case 2: Repeated Roots

If $am^2 + bm + c$ has a repeated root m_1 , then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{m_1 x} + c_2 x e^{m_1 x}$$

Magic!

$$e^{i\theta} = \cos(\theta) + i\sin(\theta)$$

Case 3: Complex Roots

If $am^2 + bm + c$ has complex roots $m_1 = \alpha + i\beta$ and $m_2 = \alpha - i\beta$, then the general solution to ay'' + by' + cy = 0 is

$$y = c_1 e^{\alpha x} \cos(\beta x) + c_2 e^{\alpha x} \sin(\beta x)$$

Auxiliary Equations

Given a linear 2nd order homogeneous **constant-coefficient** differential equation

$$ay'' + by' + cy = 0,$$

the Auxiliary Equation is

$$am^2 + bm + c = 0.$$

Auxiliary Equations

Given a linear 2nd order homogeneous **constant-coefficient** differential equation

$$ay'' + by' + cy = 0,$$

the Auxiliary Equation is

$$am^2 + bm + c = 0.$$

The roots of the auxiliary equation determines the general solution.