Math 123: Linear D.E.s of First and Second Order

Ryan Blair

CSU Long Beach

Tuesday October 11, 2016

Outline

(1) First Order Differential Equations
(2) Integrating Factor Method
(3) Superposition Principle

Types of Differential equations

Definition

A first order linear D.E. is of the form

$$
y^{\prime}+Q(x) y=R(x)
$$

where $Q(x)$ and $R(x)$ are functions of x.

Types of Differential equations

Definition

A first order linear D.E. is of the form

$$
y^{\prime}+Q(x) y=R(x)
$$

where $Q(x)$ and $R(x)$ are functions of x.

Definition

A second order linear D.E. is of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)
$$

where $P(x), Q(x)$ and $R(x)$ are functions of x.

Types of Differential equations

Definition

A first order linear D.E. is of the form

$$
y^{\prime}+Q(x) y=R(x)
$$

where $Q(x)$ and $R(x)$ are functions of x.

Definition

A second order linear D.E. is of the form

$$
y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=R(x)
$$

where $P(x), Q(x)$ and $R(x)$ are functions of x.
If $R(x)=0$ we call the D.E. homogeneous.

Integrating Factor Method

Question 1: Given a D.E. $y^{\prime}+Q(x) y=R(x)$, if you could find a function $f(x)$ such that

$$
\frac{d(f(x) y)}{d x}=f(x)\left(y^{\prime}+Q(x) y\right)
$$

could you solve the D.E.?

Integrating Factor Method

Question 1: Given a D.E. $y^{\prime}+Q(x) y=R(x)$, if you could find a function $f(x)$ such that

$$
\frac{d(f(x) y)}{d x}=f(x)\left(y^{\prime}+Q(x) y\right)
$$

could you solve the D.E.?
Answer: Yes!

Integrating Factor Method

Question 1: Given a D.E. $y^{\prime}+Q(x) y=R(x)$, if you could find a function $f(x)$ such that

$$
\frac{d(f(x) y)}{d x}=f(x)\left(y^{\prime}+Q(x) y\right)
$$

could you solve the D.E.?
Answer: Yes!
Question 2: Given a D.E. $y^{\prime}+Q(x) y=R(x)$, can you find the formula for a function $f(x)$ such that

$$
\frac{d(f(x) y)}{d x}=f(x)\left(y^{\prime}+Q(x) y\right)
$$

Integrating Factor Method

Question 1: Given a D.E. $y^{\prime}+Q(x) y=R(x)$, if you could find a function $f(x)$ such that

$$
\frac{d(f(x) y)}{d x}=f(x)\left(y^{\prime}+Q(x) y\right)
$$

could you solve the D.E.?
Answer: Yes!
Question 2: Given a D.E. $y^{\prime}+Q(x) y=R(x)$, can you find the formula for a function $f(x)$ such that

$$
\frac{d(f(x) y)}{d x}=f(x)\left(y^{\prime}+Q(x) y\right)
$$

Answer: Yes! $f(x)=e^{\int Q(x) d x}$

Integrating Factor Method

To solve $y^{\prime}+Q(x) y=R(x)$,
(1) Multiply both sides by $f(x)=e^{\int Q(x) d x}$
(2) Recognize that the L.H.S. is $\frac{d(f(x) y)}{d x}$
(0) Integrate both sides and solve for y.

Exercise: Solve $y^{\prime}+2 y=2 e^{x}$.
Exercise: Solve $x y^{\prime}+y=\sqrt{x}$.

Superposition Principle

Theorem

Given a homogeneous linear differential equation with solutions $f(x)$ and $g(x)$ then $a \cdot f(x)+b \cdot g(x)$ is also a solution for any constants a and b.

Exercise: Demonstrate this theorem for the D.E.
$y^{\prime \prime}+P(x) y^{\prime}+Q(x) y=0$

