Math 123: Taylor and Maclaurin Series

Ryan Blair

CSU Long Beach

Tuesday October 29, 2013
Outline

1. Taylor Series
Taylor Series

Definition

The **Taylor series** generated by a function \(f \) at \(x = a \) is

\[
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \ldots
\]
Taylor Series

Definition

The **Taylor series** generated by a function f at $x = a$ is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \ldots$$

Exercise: Verify that the Taylor series of e^x at $x = 0$ is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$
Taylor Series

Definition

The **Taylor series** generated by a function \(f \) at \(x = a \) is

\[
\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \ldots
\]

Exercise: Verify that the Taylor series of \(e^x \) at \(x = 0 \) is \(\sum_{k=0}^{\infty} \frac{x^k}{k!} \)

Exercise: Verify that the Taylor series of \(e^x \) at \(x = 0 \) is

\[
\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}
\]
Taylor Series

Definition

The **Taylor series** generated by a function f at $x = a$ is

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k = f(a) + f'(a)(x - a) + \frac{f''(a)}{2}(x - a)^2 + \ldots$$

Exercise: Verify that the Taylor series of e^x at $x = 0$ is $\sum_{k=0}^{\infty} \frac{x^k}{k!}$

Exercise: Verify that the Taylor series of e^x at $x = 0$ is

$$\sum_{k=0}^{\infty} (-1)^k \frac{x^{2k+1}}{(2k+1)!}$$

Theorem

If $\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k$ *has radius of convergence R, then*

$$\sum_{k=0}^{\infty} \frac{f^{(k)}(a)}{k!} (x - a)^k = f(x)$$

for all x in $(a - R, a + R)$
Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

- e^x
- 1
- $1 + x$
- $1 + x + \frac{x^2}{2}$
- $1 + x + \frac{x^2}{2} + \frac{x^3}{6}$
Taylor Series are closely related to approximations

Example: Graph the following functions side-by-side:

- \(e^x\)
- \(1\)
- \(1 + x\)
- \(1 + x + \frac{x^2}{2}\)
- \(1 + x + \frac{x^2}{2} + \frac{x^3}{6}\)

Core Idea: A Taylor Series is the LIMIT of successively better polynomial approximations!
Tricks to finding Taylor Series

Problem: Find the Taylor series for \(f(x) = \ln(x + 1) \) at \(x = 0 \).

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.
Problem: Find the Taylor series for \(f(x) = \ln(x + 1) \) at \(x = 0 \).

Trick: No trick, just substitute into the formula for Taylor series and find the pattern.

Answer: \(\sum_{k=1}^{\infty} (-1)^{k-1} \frac{x^k}{k} \)
Problem: Find the Taylor series for $f(x) = \ln(x)$ at $x = 1$.

Trick: Save yourself time and use the Taylor Series we just found.
Tricks to finding Taylor Series

Problem: Find the Taylor series for \(f(x) = \ln(x) \) at \(x = 1 \).

Trick: Save yourself time and use the Taylor Series we just found.

Answer: \(\sum_{k=1}^{\infty} (-1)^{k-1} \frac{(x-1)^k}{k} \)
Tricks to finding Taylor Series

Problem: Find the first 3 terms of the Taylor series for \(f(x) = x\sin(3x) \) at \(x = 0 \).

Trick: Use the fact that you know that Taylor Series for \(\sin(x) \).
Tricks to finding Taylor Series

Problem: Find the first 3 terms of the Taylor series for $f(x) = e^x \sin(x)$ at $x = 0$.

Trick: Use the fact that you know that Taylor Series for $\sin(x)$ and you know the Taylor Series for e^x.