Math 123: Sequences Part II and Introduction to Series

Ryan Blair

CSU Long Beach

Tuesday October 1, 2013
Outline

1. Sequences

2. Series
Convergence and Divergence

Definition

A **sequence** is an ordered set of real numbers, equivalently, a sequence is a function from the positive integers to the real numbers.

If \(\lim_{n \to \infty} a_n \) does not exist or is infinite we say it **diverges**.

Examples of sequences that diverge

\[a_n = (-1)^n \]

\[a_n = 2^n \]
Convergence and Divergence

Definition

A **sequence** is an ordered set of real numbers, equivalently, a **sequence** is an function from the positive integers to the real numbers.

If \(\lim_{n \to \infty} a_n \) does not exist or is infinite we say it **diverges**.

Examples of sequences that diverge

\[a_n = (-1)^n \]

\[a_n = 2^n \]

Exercise: If \(r \in \mathbb{R} \), when does \(a_n = r^n \) converge and diverge? (this is called a geometric sequence)
An alternating sequence is of the form $a_n = (-1)^n b_n$ where $b_n \geq 0$ for all n.

Theorem

Given an alternating sequence a_n, if $\lim_{n \to \infty} |a_n| = 0$ then $\lim_{n \to \infty} a_n = 0$.

Exercise: Prove the above theorem using our limit rules and the squeeze theorem.
An alternating sequence is of the form $a_n = (-1)^n b_n$ where $b_n \geq 0$ for all n.

Theorem

Given an alternating sequence a_n, if $\lim_{n \to \infty} |a_n| = 0$ then $\lim_{n \to \infty} a_n = 0$.

Exercise: Prove the above theorem using our limit rules and the squeeze theorem.
Monotonic Sequences

Definition

A sequence is **increasing** if $a_n \leq a_{n+1}$ for all n.
A sequence is **decreasing** if $a_n \geq a_{n+1}$ for all n.
If a sequence is decreasing or increasing we say it is **monotonic**.
Monotonic Sequences

Definition

A sequence is **increasing** if \(a_n \leq a_{n+1} \) for all \(n \).

A sequence is **decreasing** if \(a_n \geq a_{n+1} \) for all \(n \).

If a sequence is decreasing or increasing we say it is **monotonic**.

Definition

A sequence is **bounded above** if there exists a constant \(M \) such that \(a_n \leq M \) for all \(n \).

A sequence is **bounded below** if there exists a constant \(m \) such that \(a_n \geq m \) for all \(n \).

A sequence is **bounded** if it is both bounded above and bounded below.
Monotonic Sequences

Theorem

Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.
Monotonic Sequences

Theorem

Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

Example: Suppose $a_1 = \sqrt{2}$ and $a_n = \sqrt{2 + a_{n-1}}$, show that $\{a_n\}$ converges and find its limit.
Monotonic Sequences

Theorem

Every increasing sequence that is bounded above converges. Similarly, every decreasing sequence that is bounded below converges.

Example: Suppose \(a_1 = \sqrt{2} \) and \(a_n = \sqrt{2 + a_{n-1}} \), show that \(\{a_n\} \) converges and find its limit

Example: Suppose \(a_1 = 1 \) and \(a_n = 3 - \frac{1}{a_{n-1}} \), show that \(\{a_n\} \) converges and find its limit
Must Know Theorems Regarding Limits

1. \(\lim_{n \to \infty} \frac{\ln(n)}{n} = 0 \)
2. \(\lim_{n \to \infty} n^{\frac{1}{n}} = 1 \)
3. \(\lim_{n \to \infty} x^{\frac{1}{n}} = 1 \) if \(x > 0 \)
4. \(\lim_{n \to \infty} x^n = 0 \) if \(|x| < 1 \)
5. \(\lim_{n \to \infty} \left(1 + \frac{x}{n}\right)^n = e^x \)
6. \(\lim_{n \to \infty} \frac{x^n}{n!} = 0 \)
Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \ldots + a_n$$

Definition

A **Series**

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} S_n$$
Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + \ldots + a_n$$

Definition

A **Series**

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} S_n$$

Exercise: Given a constant r find $\sum_{i=0}^{\infty} r^i$ when it exists.
Series in terms of Sequences

Roughly, an infinite series $\sum_{i=1}^{\infty} a_i$ denotes the sum of the terms in the sequence $\{a_i\}_{i=1}^{\infty}$.

Definition

The **n-th partial sum** for a sequence $\{a_i\}_{i=1}^{\infty}$ is

$$S_n = \sum_{i=1}^{n} a_i = a_1 + a_2 + a_3 + ... + a_n$$

Definition

A **Series**

$$\sum_{i=1}^{\infty} a_i = \lim_{n \to \infty} S_n$$

Exercise: Given a constant r find $\sum_{i=0}^{\infty} r^i$ when it exists.

Exercise: Use partial sums to find $\sum_{i=1}^{\infty} \frac{1}{i^2+i}$.
First tests for convergence

Theorem

*If a series $\sum_{i=1}^{\infty} a_i$ converges then $\lim_{n \to \infty} a_i = 0$.***

Theorem

If $\lim_{n \to \infty} a_i \neq 0$ or does not exist, then $\sum_{i=1}^{\infty} a_i$ does not converge.
First tests for convergence

Theorem

If a series \(\sum_{i=1}^{\infty} a_i \) converges then \(\lim_{n \to \infty} a_i = 0 \).

Theorem

If \(\lim_{n \to \infty} a_i \neq 0 \) or does not exist, then \(\sum_{i=1}^{\infty} a_i \) does not converge.

Exercise: Determine the convergence or divergence of \(\sum_{i=1}^{\infty} \ln\left(\frac{i^2+1}{2i^2+1}\right) \)
First tests for convergence

Theorem

If a series \(\sum_{i=1}^{\infty} a_i \) converges then \(\lim_{n \to \infty} a_i = 0 \).

Theorem

If \(\lim_{n \to \infty} a_i \neq 0 \) or does not exist, then \(\sum_{i=1}^{\infty} a_i \) does not converge.

Exercise: Determine the convergence or divergence of \(\sum_{i=1}^{\infty} \ln\left(\frac{i^2+1}{2i^2+1}\right) \)

Exercise: Determine the convergence or divergence of \(\sum_{i=1}^{\infty} \frac{e^i}{i^2} \).