Math 600: Integration on Chains and Stoke’s Theorem

Ryan Blair

University of Pennsylvania

Tuesday November 9, 2010
Outline

1. Integration on Chains
 - In Euclidean Space
 - Stoke’s Theorem in Euclidean Space
 - Green’s Theorem
 - Divergence Theorem
The subset $[0, 1]^k \subset \mathbb{R}^k$ is the **standard unit cube** in \mathbb{R}^k.

Let U be an open subset of \mathbb{R}^n. A **singular k-cube** in U is a continuous map $c : [0, 1]^k \to U$.

A singular 0-cube in U is, in effect, just a point of U, and a singular 1-cube in U is a parametrized curve in U.
The standard (singular) k-cube $I^k : [0, 1]^k \rightarrow \mathbb{R}^k$ is the inclusion map of the standard unit cube.

A (singular) k-chain in U is a formal finite sum of singular k-cubes in U with integer coefficients, such as

$$2c_1 + 3c_2 - 4c_3.$$

It is clear how k-chains in U can be added and multiplied by integers.
For each singular k-chain c in U we will define a singular $k-1$ chain in U called the **boundary** of c and denoted by $\partial(c)$.

We begin by defining the boundary of the standard k-cube $I^k : [0,1]^k \rightarrow \mathbb{R}^k$.

For each i with $1 \leq i \leq k$ we define two singular $k-1$ cubes, $I^k_{(i,0)} : [0,1]^{k-1} \rightarrow [0,1]^k \subset \mathbb{R}^k$ $I^k_{(i,1)} : [0,1]^{k-1} \rightarrow [0,1]^k \subset \mathbb{R}^k$, as follows.

$$I^k_{(i,0)}(x^1, \ldots, x^{k-1}) = (x^1, \ldots, x^{i-1}, 0, x^i, \ldots, x^{k-1})$$

$$I^k_{(i,1)}(x^1, \ldots, x^{k-1}) = (x^1, \ldots, x^{i-1}, 1, x^i, \ldots, x^{k-1})$$
We call \(I^{k}_{(i,0)} \) the \((i,0)\)-face of \(I^k \) and \(I^{k}_{(i,1)} \) the \((i,1)\)-face. Of \(I^k \). Then we define

\[
\partial(I^k) = \sum_{i=1}^{k} \sum_{\alpha=0,1} (-1)^{i+\alpha} I^{k}_{(i,\alpha)}.
\]

If \(c : [0,1]^k \to U \) is a singular \(k \)-cube in \(U \), we define its \((i,\alpha)\)-face by
\(c(i,\alpha) = c \circ I^{k}_{(i,\alpha)} \), and then define

\[
\partial(c) = \sum_{i=1}^{k} \sum_{\alpha=0,1} (-1)^{i+\alpha} c(i,\alpha).
\]

We extend the definition of boundary to \(k \)-chains by linearity:

\[
\partial(\sum a_i c_i) = \sum a_i \partial(c_i).
\]
Fact: If c is a k-chain in U, show that $\partial(\partial c) = 0$. Briefly, $\partial^2 = 0$.
Now suppose that U is an open set in \mathbb{R}^n, that c is a k-chain in U, and that ω is a differential k-form on U. We want to define the integral $\int_c \omega$ of ω over c, and do this in several steps.

First suppose that ω is a differential k-form on the unit k-cube $[0, 1]^k$ in \mathbb{R}^k. Then

$$\omega = f(x^1, \ldots, x^k)dx^1 \wedge \ldots \wedge dx^k.$$

In that case we define

$$\int_{[0,1]^k} \omega = \int_{[0,1]^k} f = \int_{[0,1]^k} f(x^1, \ldots, x^k)dx^1 \ldots dx^k.$$
If ω is a differential k-form on the open set U in \mathbb{R}^n and $c : [0, 1]^k \to U$ is a singular k-cube in U, we define

$$\int_c \omega = \int_{[0,1]^k} c^* \omega.$$

In other words, integration of a k-form over a singular k-cube is defined by pulling the k-form back to the unit k-cube in \mathbb{R}^k and then doing ordinary integration.

In the special case that $k = 0$, a 0-form ω on U is a real-valued function on U, and a singular 0-cube is a map $c : \{0\} \to U$ of a point into U. So we define

$$\int_c \omega = \omega(c(0)).$$
Finally, the integral of a \(k \)-form \(\omega \) on \(U \) over a singular \(k \)-chain \(c = \sum a_i c_i \) is defined by
\[
\int_c \omega = \sum a_i \int_{c_i} \omega.
\]

Theorem

Stokes’ Theorem. Let \(U \) be an open set in \(\mathbb{R}^n \), \(\omega \) a differential \(k - 1 \) form on \(U \), and \(c \) a singular \(k \)-chain on \(U \). Then
\[
\int_c d\omega = \int_{\partial c} \omega.
\]
Theorem

Green’s Theorem. Let U be a compact region in \mathbb{R}^2 bounded by finitely many smooth, simple closed curves.

Let $u(x, y)$ and $v(x, y)$ be smooth functions on U.

Then

$$
\int_{\partial(U)} u(x, y) \ dx \ + \ v(x, y) \ dy = \int_U \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \ dx \ dy.
$$

Proof. Let c be a singular 2-chain which covers the region U, so that $\partial(c)$ covers $\partial(U)$. There is some subtlety in proving the existence of c, but we will deal with this at a later time.
Let $\omega = u(x, y) \, dx + v(x, y) \, dy$. Then

$$d\omega = \left(\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right) \, dx \wedge dy.$$

So Green’s Theorem states that

$$\int_{\partial c} \omega = \int_c d\omega,$$

which is just a special case of Stokes’ Theorem.
Theorem

Divergence Theorem. Let U be a compact region in \mathbb{R}^3 bounded by finitely many smooth surfaces. Let n be the outward pointing unit normal vector field along $\partial(U)$. Let V be a differentiable vector field on U. Then

$$\int_U \nabla \cdot V \ d(vol) = \int_{\partial(U)} V \cdot n \ d(area).$$

Proof. In words, the integral of the divergence of V over the region U equals the flux of V through its boundary. Let

$$V = u(x, y, z)i + v(x, y, z)j + w(x, y, z)k$$

and

$$n = n_x(x, y, z)i + n_y(x, y, z)j + n_z(x, y, z)k.$$
Then \(\int_U \nabla \cdot V d(\text{vol}) = \int_U \frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \, dx dy dz \)

\[\int_{\partial(U)} V \cdot \mathbf{n} d(\text{area}) = \int_{\partial(U)} (un_x + vn_y + wn_z) \, d(\text{area}). \]

Now define a 2-form \(\omega \) on \(U \) by

\[\omega = u(x, y, z) dy \wedge dz + v(x, y, z) dz \wedge dx + w(x, y, z) dx \wedge dy. \]

Then \(d\omega = \left(\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} \right) \, dx \wedge dy \wedge dz. \)
Thus

$$\int_U \nabla \cdot V d(vol) = \int_c d\omega,$$

where c is a singular 3-chain that covers the region U so that ∂c covers ∂U, as in Green's Theorem.

Fact:

$$(un_x + vn_y + wn_z) d(area) = u dy \wedge dz + v dz \wedge dx + w dx \wedge dy.$$
Using the result of the above problem, we have that

\[\int_{\partial U} \mathbf{V} \cdot \mathbf{n} \, d(area) = \int_{\partial U} (u n_x + v n_y + w n_z) \, d(area) \]

\[= \int_{\partial c} (u \, dy \wedge dz + v \, dz \wedge dx + w \, dx \wedge dy) \]

\[= \int_{\partial c} \omega. \]

So the Divergence Theorem,

\[\int_{U} \nabla \cdot \mathbf{V} \, d(vol) = \int_{\partial U} \mathbf{V} \cdot \mathbf{n} \, d(area), \]

is a special case of Stokes’ Theorem,

\[\int_{c} d\omega = \int_{\partial c} \omega. \]
Theorem

Classical Stokes’ Theorem. Let S be a compact, smooth oriented surface in \mathbb{R}^3 with finitely many smooth boundary curves.

Let \mathbf{n} be the unit "outward" normal vector field along S, and T the unit tangent vector field along ∂S.

Let \mathbf{V} be a smooth vector field defined on an open set in \mathbb{R}^3 which contains S.

Then

$$\int_S (\nabla \times \mathbf{V}) \cdot \mathbf{n} \, d(area) = \int_{\partial S} \mathbf{V} \cdot T \, d(length).$$