Topics for Operating Systems Comprehensive Exam

Posted Fall 2015

- 1. Operating systems concepts
 - Operating system services
 - Major issues studied in operating system development (processes, memory management, information protection and security, scheduling and resource management, and system structure)
 - Relevant issues in advanced operating systems (distributed OS, multiprocessor OS, database OS, real-time OS)

2. Processes, and concurrent process control

- Process states and their transition
- Representation of processes (PCB) and information maintained for each process
- Lightweight (thread) vs. heavyweight processes
- Interrupt processing and context switching
- Concurrent processes and the need for their control
- Process synchronization (mutual exclusion & general synchronization)
- Mechanisms for providing mutual exclusion (hardware-based vs. software-based, busy waiting vs. non-busy waiting)
- Software mechanisms with a single variable (semaphores, sequencers & event counts)
- Mechanisms that allow multiple variables (OR, AND, NOT synchronization)
- Strengths and weakness of each mechanism
- Classical problems of synchronization and their solutions using the various mechanisms
- 3. Higher level concurrent programming mechanisms
 - Monitors
 - Serializers
 - Rendezvous implemented in Ada tasks
 - Open path expressions
 - Rationale for the development of high-level mechanisms
 - Strengths and weakness of each mechanism
 - Classical problems of synchronization and their solutions using the various mechanisms
- 4. Distributed concurrency control
 - Inherent problems in a distributed environment (lack of global clock & global memory)
 - Mechanisms to counter these problems (Lamport's logical clocks, vector clocks)
 - Applications of these mechanisms
 - Causal relation of events
 - Causal ordering of messages
 - Global state recording
 - Termination detection
 - Mutual exclusion algorithms in a distributed system
 - Non-token-based algorithms (Lamport's algorithm, The Ricart-Agrawala algorithm, Maekawa's algorithm)
 - Token-based algorithms (Suzuki-Kasami's broadcast algorithm, Singhal's heuristic algorithm, Raymond's

tree-based algorithm)

- Measure and comparison of performance (message traffic, synchronization delay, response time)
- 5. Deadlock
 - States & state transitions in terms of resource request/allocation
 - Necessary conditions for deadlock and their relevance to deadlock prevention
 - Sufficient condition for deadlock
 - Deadlock detection
 - Resource allocation graphs and graph reduction
 - o Difficulty with deadlock detection in systems with reusable and consumable resources
 - o Efficient deadlock detection algorithms for special cases
 - Resolution when deadlock is detected
 - Deadlock avoidance using the Banker's algorithm

- 6. Distributed deadlock detection
 - Difficulty with deadlock prevention and avoidance in distributed systems
 - Control organizations for distributed deadlock detection (centralized, distributed, hierarchical)
 - Deadlock detection
 - The possibility of detecting phantom deadlock
 - Algorithms with centralized control (completely centralized algorithm, the Ho-Ramamoorthy 2-phase & 1-phase algorithms)
 - Algorithms with distributed control (Obermarck's path-pushing algorithm, Chandy-Misra-Haas' edge-chasing algorithm)
 - Algorithms with hierarchical control (the Ho-Ramamoorthy algorithm)
 - Performance considerations (communication overhead, deadlock persistence time, storage overhead, processing overhead)
 - Deadlock resolution
- 7. Resource management & task scheduling
 - Modeling of scheduling problems
 - Nonpreemptive vs. preemptive scheduling
 - Dispatcher and context switching
 - Representation of schedules (Gantt charts)
 - Scheduling algorithms (first-come-first-served, shortest-job-first, priority, highest response ratio next, round-robin, multilevel-queue, multilevel-feedback-queue)
 - Performance measures (utilization, throughput, waiting time, response time, turnaround time)
- 8. Memory management
 - Management schemes, hardware/software support required and inherent problem of each
 - Single contiguous allocation (resident monitor approach)
 - Partitioned memory allocation (fixed partitions, variable partitions, fragmentation problems
 - Paging
 - Segmentation
 - Combined systems (segmented paging, paged segmentation)
 - Virtual memory
 - Virtual memory implemented with paging
 - o Hardware/software support
 - Instruction execution in a virtual memory system
 - Overhead in a virtual memory system
 - Page fault rate and the effective memory access time
 - Why use associative registers for page table
 - Page replacement
 - Algorithms (FIFO, OPT, LRU, LFU, MFU, etc.)
 - The FIFO anomaly
 - Implementation and hardware support required
 - Stack algorithms and calculation of cost as a function of available real memory size
 - The stack updating procedure
 - Local/global replacement
 - Means to speed up page swaps
 - Thrashing
 - Locality principle
 - Methods to reduce thrashing (working set model, page fault frequency strategy)
 - Page size considerations

REFERENCES

- 1. M. Singhal and N.G. Shivaratri, Advanced Concepts in Operating Systems, McGraw Hill.
- 2. A. Silberschatz, P.B. Galvin and G. Gagne, Operating System Concepts, John Wiley.
- 3. Shui Lam, CECS 526 Lecture Notes.