Topics in Distributed Computer Systems Comprehensive Examination Syllabus *Posted Spring 2011*

Reference: Distributed Computing: Principles, Algorithms, and Systems, by A.D. Kshemkalyani and M. Singhal (Cambridge University Press 2008).

- 1. Overview of computing and computer systems
 - Different forms of computing
 - Different types of parallel systems
 - Characteristics of and motivation for distributed systems
 - Interconnection networks for parallel systems
 - For shared memory multiprocessor systems: multistage switch networks (e.g., Omega, Butterfly)
 - For multicomputer systems: torus, hypercube
 - Communication primitives: blocking/non-blocking, synchronous/asynchronous
 - Challenges in designing and building distributed systems
- 2. Model of distributed computations
 - Distributed programs and distributed executions
 - Space-time diagram of a distributed execution
 - Causal precedence relation of events
 - Logical vs. physical concurrency
 - Communication models relevant in distributed computing (FIFO, non-FIFO, CO)
 - Global state and cut
 - Past and future cones of event
- 3. Logical time
 - Causality of events, foundation of logical time
 - Implementing logical clocks
 - Scalar time: Data structures and rules for clock updates
 - Vector time: Data structures and rules for clock updates, differential technique to reduce communication overhead, Singhal-Kshemkalyani's implementation of the differential technique to reduce storage overhead
 - Matrix time: Data structures and rules for clock updates
 - Basic properties of all above
 - NTP for physical clocks synchronization
- 4. Global state and snapshot recording algorithms
 - Consistent global state
 - Issues in recording a global state
 - Snapshot recording algorithms
 - For FIFO channels: Chandy-Lamport, Spezialetti-Kearns
 - For non-FIFO channels: Lai-Yang, Mattern's
 - For CO: Acharya-Badrinath, Alagar-Venkatesan
 - Comparison of snapshot recording algorithms

- 5. Termination detection (Chapter 7)
 - Definition and system model
 - Termination detection using distributed snapshots
 - Termination detection by weight throwing
 - Topor's spanning-tree based termination detection
 - Chandrasekaran and Venkatesan's message-optimal termination detection algorithm
- 6. Reasoning with knowledge (Chapter 8)
 - The muddy children puzzle, what does it reveal?
 - Kripke structure and its use for the muddy children puzzle
 - The challenges in establishing common knowledge in asynchronous systems
 - Concurrent common knowledge (CCK) and achieving CCK with a snapshot-based algorithm
 - Knowledge and clocks (scalar, vector and matrix clocks)
- 7. Distributed mutual exclusions (Chapter 9)
 - Why mutual exclusion mechanisms developed for centralized, shared-memory systems fail in distributed systems
 - System model for distributed mutual exclusion
 - Requirements and performance metrics
 - Approaches for distributed mutual exclusion (token-based, non-token-based, and quorum-based)
 - Non-token-based algorithms: Lamport's algorithm, Richart-Agrwala algorithm, Singhal's dynamic information structure algorithm
 - Quorum-based algorithms: Maekawa's algorithm, Agarwal-El Abbadi algorithm
 - Token-based algorithms: Suzuki-Kasami's broadcast algorithm, Raymond's treebased algorithm
 - Performance analysis of algorithms
- 8. Consensus and Agreement (Chapter 14)
 - Problem definition and assumptions
 - The Byzantine agreement problem, and its equivalent problems (the consensus problem, and the interactive consistency problem)
 - Agreement in a failure-free system
 - Agreement in synchronous systems with failure
 - Exponential algorithm
 - Polynomial algorithm
 - Impossibility of consensus in an asynchronous system