

PROJECT RECURSIVE B-SPLINE SURFACES KAYLA BOLLINGER, PHIL WARTHER, LUKE WUKMER

B-Spline Interpolation: 2D

For the points, $\mathbf{p} = [p_1 \ p_2 \ p_3 \ p_4]$, the interpolating B-spline is defined

B-Spline Interpolation: 3D

For where $0 \leq u, v \leq 1$, define $\mathbf{u} = \begin{bmatrix} u^3 & u^2 & u & 1 \end{bmatrix}$ and $\mathbf{v} = egin{bmatrix} v^3 & v^2 & v & 1 \end{bmatrix}.$ $S(u,v) = \sum_{i=1}^4 \sum_{i=4}^4 b_i(u) b_u(v) p_{ij} = \mathbf{u} \mathbf{M} \mathbf{P} \mathbf{M}^T \mathbf{v}^T$ Where a 4×4 mesh of points is defined as: p_{11} p_{12} p_{13} p_{14} $\mathbf{P}=egin{bmatrix} p_{21} & p_{22} & p_{23} & p_{24} \ p_{31} & p_{32} & p_{33} & p_{34} \end{bmatrix}$ p_{42} p_{43} p_{44}

Consider the subpatch of ${f P}$ where $0\leq u,v\leq rac{1}{2}$.

Let $\tilde{u} = \frac{u}{2}$ and $\tilde{v} = \frac{v}{2}$. $\psi = egin{bmatrix} rac{1}{8} & 0 & 0 & 0 \ 0 & rac{1}{4} & 0 & 0 \ 0 & 0 & rac{1}{2} & 0 \ 0 & 0 & 0 & 1 \ \end{bmatrix}$ Let a matrix ψ be defined So $\mathbf{u}\Psi = \begin{vmatrix} \frac{u^3}{8} & \frac{u^2}{4} & \frac{u}{2} \end{vmatrix} = \tilde{\mathbf{u}}$ and $\mathbf{v}\Psi = egin{bmatrix} rac{v^3}{8} & rac{v^2}{4} & rac{v}{2} & 1 \end{bmatrix} = ilde{\mathbf{v}} \ .$ $S(ilde{u}, ilde{v}) = \mathbf{u} \Psi \mathbf{M} \mathbf{P} \mathbf{M}^T \Psi^T \mathbf{v}^T$

There must exist a 4×4 mesh of points \mathbf{P}_1 that interpolates the subpatch.

 $S_1(u,v) = \mathbf{u} \mathbf{M} \mathbf{P}_1 \mathbf{M}^T \mathbf{v}^T$

Since we require $S_1(u, v) = S(\tilde{u}, \tilde{v})$: $\mathbf{MP}_1 \mathbf{M}^T = \Psi \mathbf{MPM}^T \Psi$ $\mathbf{P}_1 = \mathbf{M}^{-1} \Psi \mathbf{MPM}^T \Psi \mathbf{M}^{-T}$ Let $\mathbf{H} = \mathbf{M}^{-1} \Psi \mathbf{M}$.

This gives us $\mathbf{P}_1 = \mathbf{H}^{-1} \mathbf{P} \mathbf{H}^T$ where:

$$\mathbf{H} = \frac{1}{8} \begin{bmatrix} 4 & 4 & 0 & 0 \\ 1 & 6 & 1 & 0 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 6 & 1 \end{bmatrix}$$

Steps of Subdivision

Face Points

* face point =
 average of vertices
 that define the face

$$q_{11} = \frac{p_{11} + p_{12} + p_{21} + p_{22}}{4}$$

Edge Points

* edge points = average of midpoint of the edge with average of the two new face points of the faces sharing the edge

$$q_{12}=rac{q_{11}+q_{13}}{2}+rac{p_{12}+p_{22}}{2}}{2}$$

Vertex Points

- Q = average of new face points of all faces adjacent to original vertex
- R = average of midpoints of all original edges incident to original vertex point
- new vertex point = average of Q, R, and original vertex point

$$q_{22} = rac{Q}{4} + rac{R}{2} + rac{p_{22}}{4}$$

Result of Subdivision

Requires all 16
 points of p to
 interpolate center
 patch

Subdivision for Arbitrary Topology

* S = original vertex point

$$vp = rac{Q}{n} + rac{2R}{n} + rac{(n-3)S}{n}$$

$$vp=rac{4eta Q}{n}+rac{2(lpha-2eta)R}{n}+rac{(n-2lpha)S}{n}$$

4

$$lpha = rac{3}{2}\,, \quad eta = rac{1}{2}\,, \quad n =
onumber \ vp = rac{Q}{4} + rac{2R}{4} + rac{S}{4}$$

Defining the 3D Object

Vertex Coordinates

12 x 2

Define Faces:

Define Faces: With Edges

Define Faces: With Vertices

fv =	$\lceil 1 \rangle$	2	4	3]	
	5	2 6 2 4	8	7	
	1	2	6 8	5	
	$\begin{vmatrix} 1 \\ 3 \end{vmatrix}$	4		7	
	1	43	7	5	
	$\lfloor 2$	4	8	6	6
	6 x 4				

Catmull-Clark Subdivision Algorithm

INPUT < $\{v, e, Fe, Fv, (Nv, Ne, Nf)\}$

DO:

1. calculate face points **fp** (for each face)

2. calculate edge points ep (for each edge)

3. calculate vertex points **vp** (for each vertex)

4a. update vertices v -> [vp ; ep; fp]

4b. update edges and faces

WHILE (not stopping condition)

OUTPUT \longrightarrow {v, e, Fe, Fv}

STEP 1: Face Points

 For each face,
 create a face point as the average of vertices on the face.

STEP 1: Face Points

 For each face,
 create a face point as the average of vertices on the face.

STEP 1: Face Points

 For each face,
 create a face point as the average of vertices on the face.

STEP 2: Edge Points

- Find the midpoint of each edge
- Find the average of the two face points whose faces share that edge
- * Average these two points -> ep

STEP 2: Edge Points

- Find the midpoint of each edge
- Find the average of the two face points whose faces share that edge
- * Average these two points -> ep

STEP 2: Edge Points

- Find the midpoint of each edge
- Find the average of the two face points whose faces share that edge
- * Average these two points -> ep

STEP 3: New Vertices

- find the average of all the face points whose faces have that matrix
- find the average of all the edge midpoints whose edges have that vertex
- * take the original vertex
- take the weighted average of these to create the new vertex point -> vp

STEP 3: New Vertices

- find the average of all the face points whose faces have that matrix
- find the average of all the edge midpoints whose edges have that vertex
- * take the original vertex
- take the weighted average of these to create the new vertex point -> vp

STEP 3: New Vertices

- find the average of all the face points whose faces have that matrix
- find the average of all the edge midpoints whose edges have that vertex
- * take the original vertex
- take the weighted average of these to create the new vertex point -> vp

STEP 4: Update

- * v -> [vp ; ep ; fp]
- add new edges
 between the face point
 and edge points
- … and between edge points and vertex points

STEP 4: Update

- * v -> [vp ; ep ; fp]
- add new edges
 between the face point
 and edge points
- ... and between edge points and vertex points

Possible Stopping Conditions

- * MAX_ITERATIONS
- * time-based (in real-time rendering)
- memory-based (number of vertices greater than some N)
- * per resolution (vertices less than 1 pixel apart, etc.)

References

Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes

- * E Catmull and J Clark
- http://www.cs.berkeley.edu/~sequin/CS284/PAPERS/ CatmullClark_SDSurf.pdf