

PROJECT

RECURSIVE B-SPLINE SURFAGES

 KAYLA BOLLINGER, PHIL WARTHER, LUKE WUKMER
B-Spline Interpolation: 2D

For the points, $\mathbf{p}=\left[p_{1} p_{2} p_{3} p_{4}\right]$, the interpolating B-spline is defined

$$
S(u)=\sum_{i=1}^{4} b_{i}(u) \mathbf{p}_{i}=\mathbf{u}^{T} \mathbf{M} \mathbf{p}
$$

where $\mathbf{b}(u)=\mathbf{M}^{T} \mathbf{u}=\frac{1}{6}\left[\begin{array}{c}u^{3} \\ 1+3 u+3 u^{2}-3 u^{3} \\ 4-6 u^{2}+3 u^{3} \\ (1-u)^{3}\end{array}\right]$

$\mathbf{u}=\left[\begin{array}{c}u^{3} \\ u^{2} \\ u \\ 1\end{array}\right] \quad \mathbf{M}=\frac{1}{6}\left[\begin{array}{cccc}-1 & 3 & -3 & 1 \\ 3 & 6 & 3 & 0 \\ -3 & 0 & 3 & 0 \\ 1 & 4 & 1 & 0\end{array}\right]$

B-Spline Interpolation: 3D

For where $0 \leq u, v \leq 1$, define $\mathbf{u}=\left[\begin{array}{llll}u^{3} & u^{2} & u & 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{llll}v^{3} & v^{2} & v & 1\end{array}\right]$.
$S(u, v)=\sum_{i=1}^{4} \sum_{j=4}^{4} b_{i}(u) b_{u}(v) p_{i j}=\mathbf{u M P M}^{T} \mathbf{v}^{T}$
Where a 4×4 mesh of points is defined as:

$$
\mathbf{P}=\left[\begin{array}{llll}
p_{11} & p_{12} & p_{13} & p_{14} \\
p_{21} & p_{22} & p_{23} & p_{24} \\
p_{31} & p_{32} & p_{33} & p_{34} \\
p_{41} & p_{42} & p_{43} & p_{44}
\end{array}\right]
$$

Recursive Method

Consider the subpatch of \mathbf{P} where $0 \leq u, v \leq \frac{1}{2}$.
Let $\tilde{u}=\frac{u}{2}$ and $\tilde{v}=\frac{v}{2}$.
Let a matrix ψ be defined $\psi=\left[\begin{array}{cccc}\frac{1}{8} & 0 & 0 & 0 \\ 0 & \frac{1}{4} & 0 & 0 \\ 0 & 0 & \frac{1}{2} & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$
So $\mathbf{u} \Psi=\left[\begin{array}{llll}\frac{u^{3}}{8} & \frac{u^{2}}{4} & \frac{u}{2} & 1\end{array}\right]=\tilde{\mathbf{u}}$ and
$\mathbf{v} \Psi=\left[\begin{array}{llll}\frac{v^{3}}{8} & \frac{v^{2}}{4} & \frac{v}{2} & 1\end{array}\right]=\tilde{\mathbf{v}}$.
$S(\tilde{u}, \tilde{v})=\mathbf{u} \Psi \mathbf{M P} \mathbf{M}^{T} \Psi^{T} \mathbf{v}^{T}$

Recursive Method

There must exist a 4×4 mesh of points \mathbf{P}_{1} that interpolates the subpatch.

$$
S_{1}(u, v)=\mathbf{u M} \mathbf{P}_{1} \mathbf{M}^{T} \mathbf{v}^{T}
$$

Recursive Method

Since we require $S_{1}(u, v)=S(\tilde{u}, \tilde{v})$:

$$
\begin{gathered}
\mathbf{M} \mathbf{P}_{1} \mathbf{M}^{T}=\Psi \mathbf{M} \mathbf{P M}^{T} \Psi \\
\mathbf{P}_{1}=\mathbf{M}^{-1} \Psi \mathbf{M P M}^{T} \Psi \mathbf{M}^{-T} \\
\text { Let } \mathbf{H}=\mathbf{M}^{-1} \Psi \mathbf{M}
\end{gathered}
$$

This gives us $\mathbf{P}_{1}=\mathbf{H}^{-1} \mathbf{P} \mathbf{H}^{T}$ where:

$$
\mathbf{H}=\frac{1}{8}\left[\begin{array}{llll}
4 & 4 & 0 & 0 \\
1 & 6 & 1 & 0 \\
0 & 4 & 4 & 0 \\
0 & 1 & 6 & 1
\end{array}\right]
$$

Recursive Method

Steps of Subdivision

Face Points

* face point = average of vertices that define the face

$$
q_{11}=\frac{p_{11}+p_{12}+p_{21}+p_{22}}{4}
$$

Edge Points

* edge points = average of midpoint of the edge with average of the two new face points of the faces sharing the edge

$$
q_{12}=\frac{\frac{q_{11}+q_{13}}{2}+\frac{p_{12}+p_{22}}{2}}{2}
$$

Vertex Points

* $Q=$ average of new face points of all faces adjacent to original vertex
* R = average of midpoints of all original edges incident to original vertex point
* new vertex point = average of Q, R, and original vertex point

$$
q_{22}=\frac{Q}{4}+\frac{R}{2}+\frac{p_{22}}{4}
$$

Result of Subdivision

* Requires all 16 points of p to interpolate center patch

Subdivision for Arbitrary Topology

* $S=$ original vertex point

$$
\begin{aligned}
& v p=\frac{Q}{n}+\frac{2 R}{n}+\frac{(n-3) S}{n} \\
& v p=\frac{4 \beta Q}{n}+\frac{2(\alpha-2 \beta) R}{n}+\frac{(n-2 \alpha) S}{n} \\
& \alpha=\frac{3}{2}, \quad \beta=\frac{1}{2}, \quad n=4 \\
& v p=\frac{Q}{4}+\frac{2 R}{4}+\frac{S}{4}
\end{aligned}
$$

Defining the 3D Object

Vertex Coordinates

$$
v=\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 1 \\
0 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Define Edges

$$
e=\frac{\left.\left\lvert\, \begin{array}{ll}
1 & 2 \\
3 & 4 \\
5 & 6 \\
7 & 8 \\
1 & 3 \\
2 & 4 \\
5 & 7
\end{array}\right.\right]}{\left.\left\lvert\, \begin{array}{ll}
6 & 8 \\
1 & 5 \\
2 & 6 \\
3 & 7 \\
4 & 8
\end{array}\right.\right]}
$$

Define Faces:

Define Faces: With Edges

Define Faces: With Vertices


```
Catmull-Clark Subdivision
Algorithm
INPUT
<<_{v, e, Fe, Fv, (Nv, Ne,Nf)}
DO:
\[
\begin{aligned}
& \text { 1. calculate face points fp (for each face) } \\
& \text { 2. calculate edge points ep (for each edge) } \\
& \text { 3. calculate vertex points vp (for each vertex) } \\
& \text { 4a. update vertices } v \text {-> [ vp ; ep; fp ] } \\
& \text { 4b. update edges and faces }
\end{aligned}
\]
1. calculate face points fp (for each face)
2. calculate edge points ep (for each edge)
3. calculate vertex points vp (for each vertex)
4a. update vertices v -> [ vp ; ep; fp ]
4b. update edges and faces
WHILE (not stopping condition)
OUTPUT \longrightarrow}{v,e,Fe, Fv
```


STEP 1: Face Points

* For each face, create a face point as the average of vertices on the face.

STEP 1: Face Points

* For each face, create a face point as the average of vertices on the face.

STEP 1: Face Points

* For each face, create a face point as the average of vertices on the face.

STEP 2: Edge Points

* Find the midpoint of each edge
* Find the average of the two face points whose faces share that edge
* Average these two points -> ep

STEP 2: Edge Points

* Find the midpoint of each edge
* Find the average of the two face points whose faces share that edge
* Average these two points -> ep

STEP 2: Edge Points

* Find the midpoint of each edge
* Find the average of the two face points whose faces share that edge
* Average these two points -> ep

STEP 3: New Vertices

For each vertex:

* find the average of all the face points whose faces have that matrix
* find the average of all the edge midpoints whose edges have that vertex
* take the original vertex
* take the weighted average of these to create the new vertex point -> vp

STEP 3: New Vertices

For each vertex:

* find the average of all the face points whose faces have that matrix
* find the average of all the edge midpoints whose edges have that vertex
* take the original vertex
* take the weighted average of these to create the new vertex point -> vp

STEP 3: New Vertices

For each vertex:

* find the average of all the face points whose faces have that matrix
* find the average of all the edge midpoints whose edges have that vertex
* take the original vertex
* take the weighted average of these to create the new vertex point -> vp

STEP 4: Update

For each vertex:

* v -> [vp ; ep ; fp]
* add new edges between the face point and edge points
* ... and between edge points and vertex points

STEP 4: Update

For each vertex:

* v-> [vp; ep ; fp]
* add new edges between the face point and edge points
* ... and between edge points and vertex points

$$
8:
$$

Possible Stopping Conditions

* MAX_ITERATIONS
* time-based (in real-time rendering)
* memory-based (number of vertices greater than some N)
* per resolution (vertices less than 1 pixel apart, etc.)

References

Recursively Generated B-Spline Surfaces on Arbitrary Topological Meshes

* E Catmull and J Clark
* http://www.cs.berkeley.edu/~sequin/CS284/PAPERS/ CatmullClark SDSurf.pdf

