Determining the X-51 Antenna Gain Pattern Using Near-Point Approximation

Erich Brownlow, Melissa Dominguez, Kelly Jiang

Department of Mathematics and Statistics

Introduction:

- The radiation gain pattern of a receiving antenna is defined as the angular dependence on incoming signal amplification.

Purpose:

Given a set of test data, approximate and visually represent the antenna gain pattern of the X-51 for all possible azimuth (az) and elevation (el) angles.
-Data given as triplets: \{az, el, gain\}
-Az angle: horizontal angle off the boresight of the aircraft
-El angle: vertical angle off the boresight of the aircraft.
-Measured points cover the "imagined" sphere about the aircraft.

Methods:

To determine the gain at a chosen az/el point, \{az0,el0\}, find the measured points "near" that point. How do we do that?
Assuming the points all lie on the unit sphere (radius=1) convert from spherical to Cartesian coordinate system:
$\mathrm{X}=\boldsymbol{\operatorname { s i n }}(\mathrm{az})^{*} \cos (\mathrm{el}), \mathrm{Y}=\sin (\mathrm{az})^{*} \sin (\mathrm{el}), \mathrm{Z}=\cos (\mathrm{az})$
Compute Euclidean distance from chosen point ($\mathrm{XO}, \mathrm{Y} 0, \mathrm{ZO}$) to all measured points (X, Y, Z)
$=\left((X 0-X)^{\wedge} \mathbf{2}+(Y 0-Y)^{\wedge} \mathbf{2}+(Z 0-Z)^{\wedge}\right)^{\wedge}(1 / 2)$

- Collect all measured points that are within a given distance from $\{\mathrm{XO}, \mathrm{Y} 0, \mathrm{ZO}\}$. These points are near the point $\{\mathrm{azO}, \mathrm{el} 0\}=\{\mathrm{XO}, \mathrm{YO}, \mathrm{ZO}\}$. Distance represented in degrees along the sphere.

Near-Point-Mean (NPM)- gain at $\{\mathrm{az0}, \mathrm{el} 0\}=$
arithmetic mean of gains of near point gains. (Brownlow, E., 2007)

Near-PointPercentile (NPP)gain at \{az0, el0\} $=p$-th percentile of near point gains. (Brownlow, E., 2007)

- Determine the gain at every az/ el point
$-180<=a z<=180$ -90<=el<=90

