Heat Transfer Analysis of Supercooled Droplets Using Finite Difference Method

Department of Mathematics and Statistics

California State University Long Beach

Edgar Gonzalez, Minh N. Tran, Man H. Vu

Internal Heat Conduction Model

Moving Boundary Model

 $\left[c\rho\frac{\partial T}{\partial t} = \frac{\partial}{\partial r}\left(k\frac{\partial T}{\partial r}\right) + \frac{2k}{r}\frac{\partial T}{\partial t}\right]$

 $V_f = V_d \frac{c_l \rho_l}{\rho_s} \frac{(T_f - T_n)}{L_f}$

+1.n+1

 $i \pm 1 n$

i-1, n-1 i, n-1 i+1, n-1

Mathematical Models [2]:

Cooling Stages (1) and (4)

Recalescence Stage (2)

Results [2]:

Experimental data using 40 droplets were obtained. From the data, the freezing time of the droplet was estimated using the accepted definition of freezing time.

Introduction:

•Over 15% of weather-related aviation accidents is attributed to aircraft icing [1]. Aircraft icing is caused by supercooled water droplets that exist in clouds.

•The accumulated ice hinders mechanical functions of wings, reduce lift, and increase drag, all of which pose a major safety problem.

•We will explore the temperature transition and the time it takes for a suspended supercooled droplet to freeze using finite difference.

Problem [2]:

Experiment

TACAMADE

