Heat Transfer Analysis of Supercooled Dropletis

Edgar Gonzalez, Minh N. Tran, Manth. Vu

Mathematical Models [2]:
Cooling Stages (1) and (4)
Uniform Temperature Solution

$$
c \rho V_{d} \frac{\partial T_{d}}{\partial t}=q_{h}+q_{m}+q_{r}+q_{t h}
$$

Internal Heat Conduction Model

$$
\left\{\begin{array}{l}
c \rho \frac{\partial T}{\partial t}=\frac{\partial}{\partial r}\left(k \frac{\partial T}{\partial r}\right)+\frac{2 k}{r} \frac{\partial T}{\partial t} \\
-\left.k \frac{\partial T}{\partial r}\right|_{r r R}=q_{h}+q_{m}+q_{r},-\left.k \frac{\partial T}{\partial r}\right|_{r=0}=q_{t h}
\end{array}\right.
$$

Recalescence Stage (2)

$$
V_{f}=V_{d} \frac{c_{l} \rho_{l}}{\rho_{s}} \frac{\left(T_{f}-T_{n}\right)}{L_{f}}
$$

Freezing Stage (3)

Heat Balance Model

$$
L_{f} \rho_{s} \frac{\partial V_{f}}{\partial t}=q_{h}+q_{m}+q_{r}+q_{t h}
$$

Moving Boundary Model

$$
\begin{array}{ll}
\rho_{s} L_{f} \frac{d f}{d t}=\left.k_{s} \frac{\partial T_{s}}{\partial r}\right|_{(r-i)}-\left.k_{l} \frac{\partial T_{l}}{\partial r}\right|_{(r-i)} & f_{i}^{o}=R \sqrt[3]{V_{f}} \\
v=K_{m}\left(T_{f}-T_{i}\right) & f_{i}^{l}=R \sqrt[3]{1-V_{f}}
\end{array}
$$

Finite Difference Method [3]:
Heat Equation

Outward Freezing Schematic:
$\mathrm{q}_{\mathrm{th}}=$ Thermalcouple
$q_{\mathrm{h}}=$ Heat Transfer
$\mathrm{q}_{\mathrm{r}}=$ Thermal Radiation
$\mathrm{q}_{\mathrm{m}}=$ Mass Transfer
$R=$ Droplet Radius
$f=$ Solid front

Temperature Phases
(1) Liquid Cooling
(2) Recalescence
(3) Freezing
(4) Solid Cooling

Introduction:

-Over 15% of weather-related aviation accidents is attributed to aircraft icing [1]. Aircraft icing is caused by supercooled water droplets that exist in clouds.
-The accumulated ice hinders mechanical functions of wings, reduce lift, and increase drag, all of which pose a major safety problem.
-We will explore the temperature transition and the time it takes for a suspended supercooled droplet to freeze using finite difference.

Problem [2]:

Experiment
Cold airstream monitored
-Temperatures monitored \& recorded by computer -Liquid nitrogen \& air mixed to produce cold air stream

- Moisture scrubbers remove moisture from airstream -Proper temperature were pushed to second chamber -Droplet was suspend on thermocouple 1.

$$
\begin{aligned}
& \text { Heat Equation } \\
& \begin{array}{l}
\frac{\partial T}{\partial t}(x, t)=\alpha \frac{\partial^{2} T}{\partial x^{2}}(x, t) \\
\end{array} \begin{aligned}
& \partial x(0 \text { or } L, t)=f(t) \\
& T(x, 0)=g(x)
\end{aligned}
\end{aligned}
$$

Forward Difference

Central Second Difference

$$
\left(\frac{\partial T}{\partial t}\right)_{i}^{n}=\frac{T_{i}^{n+1}-T_{i}^{n}}{\Delta t} \quad\left(\frac{\partial^{2} T}{\partial x^{2}}\right)_{i}^{n}=\frac{T_{i+1}^{n}-2 T_{i}^{n}+T_{i-1}^{n}}{\Delta x^{2}}
$$

Results [2]:

Experimental data using 40 droplets were obtained. From the data, the freezing time of the droplet was estimated using the the data, the freezing time of the dro
accepted definition of freezing time.

Temperature of Droplet in Solid Cooling Stage

Figure 1: Using data from varying air velocity and the respective
predicted model, the solid droplet takes approximately 15 cool
Total Time and Temperature Over All Four Stages

Figure 3: The droplet takes approximately 55 seconds to freeze

Conclusions:

-With the optimal parameters, the model yield a freezing time of approximately 55 seconds.
-Using this information, Anti-freezing liquids can be produced to absorb the crystallization and prevent the freezing stage. -For other solutes such as pollutants dissolved in droplets, a similar experiments can be conducted

References:

[1] Lankford, T. T., Aircraft lcing: A Pilot's Guide, McGraw-Hills Companies, Inc., New [1] Lankford, T.
York, NY, 1999.
[2] Chen, X. D., Hindmarsh, J.D., Russell, A.B., Experimental and Numerical Analysis [2] Chen, X. D., Hindmarsh, J.D.., Russell, A.B., Experimental and Nume
of the Temperature Transition of a Suspended Frezzing Water Droplet, [3] John D. Anderson, Jr. Computational Fluid Dynamics, The Basics with [3] John D. Anderson, Jr., Computational Fluid Dynamics,
Applications, The McGraw-Hill Companies, Inc., 1995.

