
Error

Introduction

Method

Results

Summary

Conclusion

Acknowledgements

Alexander Graham
Department of Mathematics One of the greatest challenges in

Scientific Computing is overcoming
error in representation. Since the
computer can only compute a finite
number of operations, one must be
aware of data that is lost due to round-
off error. In this presentation, we
illustrate an example, and a method to
reconstruct our problem.

Computer Arithmetic Algorithms
 Israel Koren, Prentice-Hall, 2002

Let’s show where subtraction of near
close numbers can go wrong by finding
a way of computing without
loss of undue significance. If we
compute by hand we have the following:

Numerical Analysis
 Kincaid & Cheney, AMS, 2002

We can rewrite the function in the
following method to avoid this trouble:

These two functions are equivalent
because we simply multiplied by a
special value of one (the conjugate) to
eliminate the loss of significance. Our
answer also goes to 0 as x goes to 0.

Using Numerical Software, such as
MatLab, we find that as x gets closer to
0, our approximation gets worse
because we are subtracting close
numbers, and the computer can only
store a finite number of digits. If we
evaluate at 10^(-10), we find that we
lose 9 significant bits by the following
theorem:

Let x and y be positive normalized
floating point numbers.In the subtraction
x − y, r significant bits are lost where q
<= r <= p and 2^-p <= 1 -y/x <= 2^-q for
some positive integers p and q.

Controlling error is key for many applied
mathematicians. It is used frequently in
image processing, radio signals, and
digital filters to maintain consistency
within programs. Similar techniques can
be used with transcendental functions,
by expanding them into their respective
Taylor polynomials. This is one of many
tools we can use to increase our
understanding of numerical data in
Scientific Computing

Our numerical program shows us that
10^(-10) yields .0000000003, while
10^(-11) yields .00000000075, but this
is false simply because the function is
strictly increasing for x > 0. Our function
becomes unstable for x close to 0, so
we need to make a slight adjustment to
avoid subtraction by like terms.

