
CATS AND DOGS : WHAT’S THE DIFFERENCE?

AUSTIN ADAMS AND AMY MULGREW

1. Introduction

How can a computer distinguish between two different objects? For people it is easy to say
a picture is either a cat or a dog, but the computer is not quite as visually capable. In order to
classify a test picture as a dog or a cat, the computer needs to be trained to do so. Four methods
are discussed: Principal Angles, PCA and Principal Angles, Fisher Discriminant Analysis, and
Wavelet Edge Finding. These are organized into a description, results of testing against itself,
and result of testing on unknown 38 images.

2. Principal Angles Method

Principal Angles is a method by which to find the smallest angle between two subspaces.
The smaller the angle between subspaces the closer the subspaces are considered to be.

2.1. Method and Classifier. The Principal Angles Method is as follows:

(1) Find orthonormal bases for input matrices X and Y labeled QX and QY .
(2) Find svd of cosine: perform svd on QT

XQY , singular values list as (σ1, σ2, · · · , σn)

(3) Y =

{
QY −QX(QT

XQY) if rank(QX) < rank(QY)
QX −QY (QT

YQX) else
(4) Find svd of sine: perform svd on Y, singular values list as (µ1, µ2, · · · , µm)

(5) kth angle is given by θk =

{
arccos(σk) if σ2

k < 0.5
arcsin(µk) if µ2

k ≤ 0.5
for k from 1 to min(rank(QX , QY))

This was taken from [1].
To use principal angles as a classifier, take a test picture and run it against both the training

dog set and the training cat set. Whichever set has the smaller angle is what to classify the
test picture as. See Appendix B and C for the specific codes used.

2.2. Classification Errors of Principal Angles Method. Table 1 shows the results of
the Principal Angles Method on its own training data. Figures 1 and 2 show the cats and
dogs classified wrongly by this method. See Appendix D for how the confusion matrix was
constructed.

Date: May 20, 2010.
1

2 AUSTIN ADAMS AND AMY MULGREW

Classified as cat Classified as dog
Actually a cat 76 4
Actually a dog 5 75

Table 1. Confusion Matrix for Principal Angles Method

(a) (b) (c) (d)

Figure 1. These four pictures are the cats that were mislabeled by the Principal
Angles Method

(a) (b) (c) (d)

(e)

Figure 2. These five pictures are the dogs that were mislabeled by the Principal
Angles Method

2.3. Predicted Class Membership for Unknowns. Dogs are listed as a 0 and cats are
listed as a 1. See Table 2 for all of the labels and their corresponding actual values. There are

MATH 695 FINAL 3

five mistakes in labeling, for a total of 33
38

or around 87% accuracy. The specific animals labeled
incorrectly were [4 17 19 20 34] as seen in Figure 3.

Image number 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
Labeled 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 1
Actual 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0

Image number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Labeled 1 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1
Actual 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1

Table 2. Class Membership as Predicted by Principal Angles

(a) Image 4 (b) Image 17 (c) Image 19 (d) Image 20

(e) Image 34

Figure 3. These are the test images incorrectly labeled by the Principal Angles Method.

3. PCA/Principal Angles

3.1. Method and Classifier. PCA/PA Matlab pseudo code:

(1) Load the gallery files which consist of 80 cats and 80 dogs.
(2) Perform Principal Component Analysis (PCA) dimensionality reduction on the entire

gallery and retain 99% of the energy.
(a) Calculate the Ensemble Average of the gallery.
(b) Mean Subtract the gallery.

4 AUSTIN ADAMS AND AMY MULGREW

(c) Find the economic Singular Value Decomposition (SVD) of the mean subtracted
gallery.

(d) Calculate the value of D that retains 99% of the energy. (turns out to be D = 231)
(e) Reduce the dimension of the KL basis and the coefficients of the gallery using D.
(f) Return the reduced KL basis, the Ensemble Average and the reduced coefficients

of the gallery.
(g) Save these results to use in the classification, so that the classification avoids the

computationally expensive task of SVD.
(3) Mean subtract the gallery’s Ensemble Average from the probe data (a 4096 × 38 matrix

of the missing cats and dogs).
(4) Apply the reduced KL basis to the mean subtracted probe data to obtain the reduced

coefficients of the probe in the KL basis.
(5) Beginning with the first animal in the probe, create θ1, the angle between the probe

animal and the subspace of the cats from the gallery, and θ2, the angle between the
probe animal and the subspace of the dogs from the gallery.

(6) If θ1 < θ2, then classify the probe animal as a cat, since it most closely resembles the
cats. Otherwise, classify the probe animal as a dog.

In the previous section the images of cats and dogs are classified using the Principal Angle
Method without prior manipulation of the pictures. Since the images have 64 × 64 pixels, the
matrices we use are large. Not all of the information that the matrices hold is essential to the
classification. Thus, to expediate computation and reduce extraneous data transfer, we use the
method of Principal Component Analysis (PCA) to reduce the dimensions of the matrices.

A key element to PCA is the extraction of eigenvalues and eigenvectors of a covariance matrix.
We begin with a covariance matrix of size 4096 × 160, since we have 160 images in the gallery
of cats and dogs, each with 64 × 64 (=4096) pixels. While still maintaining 99% of the energy
(important information) of the images, we can reduce the matrix to 231 × 160. See reference [1].
PCA produces the set of eigenvectors sorted according to the magnitude of their corresponding
eigenvalues. The first 12 eigenvectors, or eigenanimals in this case, are displayed in Figure 4.
The first two eigenanimals emphasize the location and the roundness of the face, which is the
most prominent quality shared by all the images. The location of the facial components seem
emphasized in eigenanimals 3, 5, 6, 9 and 10.

The results improve slightly by reducing the dimension with PCA and then applying the
Principal Angle method from the previous section as a classifier. See Appendix H for the
specific codes used.

3.2. Classification Errors of the Modified Principal Angles Method. Table 3 shows the
results of the Modified Principal Angles Method on its own training data. Note that according
to the file none of the training set was mislabeled.

MATH 695 FINAL 5

Figure 4. The first 12 eigenanimals displaying the top 12 characteristics found
in the images.

Classified as Cat Classified as Dog
Actually a Cat 80 0
Actually a Dog 0 80

Table 3. Confusion matrix for Modified Principal Angles Method

3.3. Predicted Class Membership for Unknowns. Dogs are listed as a 0 and cats are
listed as a 1. See table 4 for all of the labels and their corresponding actual values. There
are three mistakes in labeling, for a total of 35

38
or around 92% accuracy. The specific animals

labeled incorrectly were [4 17 34] as seen in Figure 5.

4. PCA/FDA

Fisher’s linear discriminant analysis (FDA) is a classification method that finds an optimal
projection to one dimensional space and projects all the data to a real line. The goal is to
separate the training data completely on the projection so that we can pick a threshold value

6 AUSTIN ADAMS AND AMY MULGREW

Image Number 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
Labeled 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 1 0 0
Actual 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0

Image Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Labeled 0 1 0 1 0 0 0 1 1 0 1 0 0 1 0 1 1 0 1
Actual 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1

Table 4. Class Membership as predicted by Modified Principal Angles

(a) Image 4 (b) Image 17 (c) Image 34

Figure 5. These three images were mislabeled by the Modified Principal Angles Method

which separates the cats and the dogs. Once we project the unknown data to the real line, if
it is on the dog side of the threshold, it is classified as a dog, otherwise it is said to be a cat.

4.1. Method and Classifier. PCA/FDA Matlab pseudo code:

(1) Load the gallery files which consist of 80 cats and 80 dogs.
(2) Perform Principal Component Analysis (PCA) dimensionality reduction on the entire

gallery and retain 99% of the energy as decribed previously.
(3) Mean subtract the gallery’s Ensemble Average from the probe data (a 4096 × 38 matrix

of the missing cats and dogs).
(4) Apply the reduced KL basis to the mean subtracted probe data to obtain the reduced

coefficients of the probe in the KL basis.
(5) Perform Fisher’s linear discriminant analysis (FDA) for two classes to find the optimal

projection ω for the linear separation of the two classes: cats and dogs.
(6) Project the coefficients of the gallery of cats, gallery of dogs and probe onto ω. Now all

the data lies in one dimension.
(7) Calculate the mean of the cat gallery and the mean of the dog gallery. If the mean of

the cat gallery is less than the mean of the dog gallery, flip every element projected onto
ω about 0 so that the order of the gallery data will be dogs < threshold < cats. Note
that the threshold value is the mean of the largest dog value and the smallest cat value.

MATH 695 FINAL 7

(8) Classify the elements of the probe by comparing each value with the threshold. If a
probe element is less than the threshold, it is classified as a dog. If a probe element is
greater than the threshold, it is classified as a cat.

4.2. Classification Errors on FDA method. Table 5 shows the results of the FDA method
on its own training data. Note how poorly it does against its own training data. Figures 6 and
7 show some of the cats and dogs wrongly classified by this method.

Classified as Cat Classified as Dog
Actually a Cat 72 8
Actually a Dog 18 62

Table 5. Confusion matrix for two class FDA.

(a) (b) (c) (d)

Figure 6. These four pictures are some of the cats that were mislabeled by the
FDA Method

(a) (b) (c) (d)

Figure 7. These four pictures are some of the dogs that were mislabeled by the
FDA Method

8 AUSTIN ADAMS AND AMY MULGREW

4.3. Predicted Class Membership for Unknowns. Dogs are again listed as a 0 and cats
are listed as a 1. See table 6 for a list of all the labels and what the actual label is. Note that
despite the errors in the confusion matrix above there are only a few errors against the unknown
images. There are three mistakes in labeling, for a total of 35

38
or around 92% accuracy. The

specific animals labeled incorrectly were [17 18 23] seen in Figure 9. Figure 8 shows the result
of projecting the gallery and the unknown images to the real line.

Figure 8. Two class FDA. Dogs from the probe are displayed in magenta, while
cats from the probe are displayed in cyan.

Image Number 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
Labeled 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 1 1 0
Actual 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0

Image Number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Labeled 0 1 0 0 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1
Actual 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1

Table 6. Class Membership as predicted by FDA.

5. Wavelet Edge Detection

Wavelets were used as a way to extract the edges from each image. The result was then put
through the Principal Angles Method as detailed above.

MATH 695 FINAL 9

(a) Image 17 (b) Image 18 (c) Image 23

Figure 9. These three pictures are the images that were mislabeled by the FDA Method

5.1. Method and Classifier. The method used is as follows:

(1) Perform one level discrete wavelet transform on each image.
(2) Add the horizontal and vertical detail components, and call this your new image.
(3) Take all the new images through the Principal Angles Method.

This method is just a modification of the Principal Angles Method, but it works much better.

5.2. Classification Errors of Wavelet/Principal Angles Method. Table 7 shows the
results of the Wavelet Edge method on its own training data. Figures 10 and 11 show the cats
and dogs classified wrongly by this method. See Appendix G for how the confusion matrix was
constructed.

Classified as cat Classified as dog
Actually a cat 78 2
Actually a dog 6 74

Table 7. Confusion Matrix for Wavelet Edge Detection Method

(a) (b)

Figure 10. These two pictures are the cats that were mislabeled by the Wavelet
Edge Detection Method.

10 AUSTIN ADAMS AND AMY MULGREW

(a) (b) (c)

(d) (e) (f)

Figure 11. These six pictures are the dogs that were mislabeled by the Wavelet
Edge Method

5.3. Predicted Class Membership for Unknowns. Again dogs are listed as a 0 and cats
are listed as a 1. See Table 8 for a list of all the labels and what the actual label is. There are
only two mistakes in labeling, for a total of 36

38
or around 95% accuracy. The specific animals

labeled incorrectly were [4 19] seen in Figure 12.

Image number 01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16 17 18 19
Labeled 0 1 0 0 1 1 1 1 0 1 0 0 1 1 0 0 0 0 1
Actual 0 1 0 1 1 1 1 1 0 1 0 0 1 1 0 0 0 0 0

Image number 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
Labeled 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1
Actual 0 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 1 0 1

Table 8. Class Membership as Predicted by Principal Angles

References

[1] Jen-Mei Chang. MATRIX METHODS FOR GEOMETRIC DATA ANALYSIS AND PATTERN RECOG-
NITION, 2009.

MATH 695 FINAL 11

(a) Image 4 (b) Image 19

Figure 12. These two pictures are the test probes that were mislabeled by the Wavelets

Appendix A. Main script 1

%% MATH 695 Final Project

% Written by Austin Adams

%Two main methods of classifying images will be explored

%Cats == 1 %Dogs == 0

load animals

load PatternRecAns

Cats=animals(:,1:80);

Dogs=animals(:,81:160);

%% Principal Angles Method

%[CM_PAM,PAMcatswrong,PAMdogswrong]=PAM_confmat(Cats,Dogs);

%labels_PAM=class_principal(Cats,Dogs,TestSet);

%ResultsPAM=abs(labels_PAM-hiddenlabels);

%% Wavelet Edge Detection Method

[CM_WAV,WAVcatswrong,WAVdogswrong]=WAV_confmat(Cats,Dogs);

labels_WAV=class_wave(Cats,Dogs,TestSet);

ResultsWAV=abs(labels_WAV-hiddenlabels)

12 AUSTIN ADAMS AND AMY MULGREW

Appendix B. Principal Angles Method

%This code computes small principal angles between two subspaces

%Written by Austin Adams

%Input:X,Y

% X=n-by-p matrix

% Y=n-by-q matrix

%Output:Anglesk

% Anglesk=principal angles between subspaces R(X)=X and R(Y)=Y

function [Anglesk]=prinangles(X,Y)

Qx=orth(X); %Orthogonal bases

Qy=orth(Y);

Co=svd((Qx’)*Qy,0); %Cosine values

rX=rank(X);

rY=rank(Y);

if rX >= rY

YNew = Qy - Qx*(Qx’*Qy);

else

YNew = Qx - Qy*(Qy’*Qx);

end;

Si=svd(YNew,0); %Sine values

Si=sort(Si); %This sort makes the whole thing work

%Since Co is in descending order, Si needs to be in ascending

%order

for i=1:min(rX,rY)

if (Co(i))^2 < 0.5

Anglesk(i) = acos(Co(i));

elseif (Si(i))^2 <= 0.5

Anglesk(i) = asin(Si(i));

end

end

Appendix C. Principal Angles Classifier

%%This code classifies cats and dogs using principal angles

%Written by Austin Adams

MATH 695 FINAL 13

%Input:Cats,Dogs,Probes

% Cats=gallery of cats(each image is 4096 by 1)

% Dogs=gallery of dogs(ditto)

% Probes=test images(ditto)

%Output:Class

% Class=labels(1==cat 0==dog) in vector form

function [labels]=class_principal(Cats,Dogs,Probes)

[mp,np]=size(Probes);

labels=1:np;

for i=1:np

Pvscat=prinangles(Probes(:,i),Cats);

Pvsdog=prinangles(Probes(:,i),Dogs);

if Pvscat < Pvsdog

labels(i)=1;

elseif Pvsdog < Pvscat

labels(i)=0;

end

end

Appendix D. Confusion Matrix for Principal Angles

%%This code evaluates the confusion matrix for principle angles method

%Written by Austin Adams

%Input:Cats,Dogs

% Cats=first class

% Dogs=second class

%Note Cats and Dogs must be same size

%Output:CM

% CM=confusion matrix

function [CM,wrongCats,wrongDogs]=PAM_confmat(Cats,Dogs)

[m,n]=size(Cats);

CM=zeros(2);

wrongCats=[];

14 AUSTIN ADAMS AND AMY MULGREW

wrongDogs=[];

for i=1:n

test_cat=Cats(:,i);

test_dog=Dogs(:,i);

probes=[test_cat test_dog];

if i==1

cats=Cats(:,2:n);

dogs=Dogs(:,2:n);

elseif i==n

cats=Cats(:,1:n-1);

dogs=Dogs(:,1:n-1);

else

cats=[Cats(:,1:i-1) Cats(:,i+1:n)];

dogs=[Dogs(:,1:i-1) Dogs(:,i+1:n)];

end

labels=class_principal(cats,dogs,probes);

if labels(1)==1

CM(1,1)=CM(1,1)+1;

else

CM(1,2)=CM(1,2)+1;

wrongCats=[wrongCats i];

end

if labels(2)==0

CM(2,2)=CM(2,2)+1;

else

CM(2,1)=CM(2,1)+1;

wrongDogs=[wrongDogs i];

end

end

Appendix E. Wavelet Edges Method

%%This code finds the edge of an image

%Written by Austin Adams

%Input: Data

MATH 695 FINAL 15

% Data=original images, each in column form (Should be 4096 by 1 for each

% image)

function [Edges]=wave_edge(Data)

[m,n]=size(Data);

for i=1:n

[a,h,v,d]=dwt2(reshape(Data(:,i),64,64),’haar’);

edges=h+v;

Edges(:,i)=reshape(edges,32*32,1);

end

Appendix F. Wavelet Edges Classification with Principal Angles

%%This code classifies cats and dogs using wavelets and principal angles

%Written by Austin Adams

%Input:Cats,Dogs,Probes

% Cats=gallery of cats(each image is 4096 by 1)

% Dogs=gallery of dogs(ditto)

% Probes=test images(ditto)

%Output:Class

% Class=labels(1==cat 0==dog) in vector form

function [labels]=class_wave(Cats,Dogs,Probes)

[mp,np]=size(Probes);

Cat_edge=wave_edge(Cats);

Dog_edge=wave_edge(Dogs);

Probe_edge=wave_edge(Probes);

labels=1:np;

for i=1:np

Pvscat=prinangles(Probe_edge(:,i),Cat_edge);

Pvsdog=prinangles(Probe_edge(:,i),Dog_edge);

if Pvscat < Pvsdog

labels(i)=1;

elseif Pvsdog < Pvscat

labels(i)=0;

end

end

16 AUSTIN ADAMS AND AMY MULGREW

Appendix G. Wavelet Confusion Matrix

%%This code evaluates the confusion matrix for wave/principle angles method

%Written by Austin Adams

%Input:Cats,Dogs

% Cats=first class

% Dogs=second class

%Note Cats and Dogs must be same size

%Output:CM

% CM=confusion matrix

function [CM,wrongcats,wrongdogs]=WAV_confmat(Cats,Dogs)

[m,n]=size(Cats);

CM=zeros(2);

wrongcats=[];

wrongdogs=[];

for i=1:n

test_cat=Cats(:,i);

test_dog=Dogs(:,i);

probes=[test_cat test_dog];

if i==1

cats=Cats(:,2:n);

dogs=Dogs(:,2:n);

elseif i==n

cats=Cats(:,1:n-1);

dogs=Dogs(:,1:n-1);

else

cats=[Cats(:,1:i-1) Cats(:,i+1:n)];

dogs=[Dogs(:,1:i-1) Dogs(:,i+1:n)];

end

labels=class_wave(cats,dogs,probes);

if labels(1)==1

CM(1,1)=CM(1,1)+1;

else

CM(1,2)=CM(1,2)+1;

wrongcats=[wrongcats i];

MATH 695 FINAL 17

end

if labels(2)==0

CM(2,2)=CM(2,2)+1;

else

CM(2,1)=CM(2,1)+1;

wrongdogs=[wrongdogs i];

end

end

Appendix H. Main Script 2

%% Math 695 Final Project

% Written by Amy Mulgrew

% load galleryFiles, do PCA on full gallery 99% (keep ensemble average), mean

% subtract the probe, Classify with FDA and with Principal Angles.

% Cats == 1 %Dogs == 0

% Input: Test set (Probe) & actual classification of the Test set (Actual)

% Output:

% view: 3-by-38 matrix, top row actual classification, second row FDA

% classification, third row PA classification

% confFDA: confusion matrix from FDA method

% confPA: confusion matrix from PA method

% time: time it takes the program to run

function [view confFDA confPA time] = MulgrewFinalProject2(Probe, Actual)

tic;

load galleryFiles

catsGallery = [D1 D1flip];

dogsGallery = [D2 D2flip];

Gallery = [catsGallery dogsGallery];

[AGal,U,D,GalEnsAvg] = PCA(Gallery,99);

Ud = U(:,1:D); %dimension reduced KL basis

[dim N] = size(AGal);

catsKL = AGal(:,1:(N/2)); %split back into the 2 sets of data points

dogsKL = AGal(:,(N/2+1):N);

nProbe = size(Probe,2);

18 AUSTIN ADAMS AND AMY MULGREW

N = 2* size(catsKL,2);

ProbeMS = Probe - repmat(GalEnsAvg,1,nProbe); %Mean Subtract the Probe

ProbeKL = Ud’*ProbeMS; %coefs of Probe

classFDA = NaN(1,nProbe);

classPA = NaN(1,nProbe);

%% FDA

w = finalFDA(catsKL, dogsKL);

vcats = w’*catsKL;

vdogs = w’*dogsKL;

vProbe = w’*ProbeKL;

if mean(vcats)< mean(vdogs)

w = -w;

vcats = -vcats; vdogs = -vdogs; vProbe = -vProbe;

end

%dogs < threshold < cats

sortcats = sort(vcats);

sortdogs = sort(vdogs);

threshold = .5*(sortcats(1) + sortdogs(end));

% plot FDA

m = sortdogs(1);

M = sortcats(end);

x = m-10:M+10;

figure(1);

clf

plot(x,0,’k-’);

axis([x(1) x(end) -.5 1.5])

hold on

plot(threshold,0,’y*’);

for i = 1:length(sortdogs)

plot(sortdogs(i),0,’r+’); %dogs red

plot(sortcats(i),0,’b+’); % cats blue

end

for i = 1:nProbe

if Actual(i) == 0

plot(vProbe(i),1,’m*’); %is a dog, so make pink

else

MATH 695 FINAL 19

plot(vProbe(i),1,’c*’); %is a cat, so make cyan

end

if vProbe(i) <= threshold %thinks it’s a dog

classFDA(i) = 0;

else classFDA(i) = 1; %thinks it’s a cat

end

end

%% PA

mm = N; %%number of elements in the Gallery

AGal = [catsKL dogsKL];

for probe = 1:size(ProbeKL,2)

for class = 1:2

Digit = AGal(:,(class-1)*(mm/2)+1:class*(mm/2));

theta(class) = PrincipalAngles(Digit,ProbeKL(:,probe));

end

if theta(1) < theta(2) % thinks is a cat

classPA(probe) = 1;

else classPA(probe) = 0; %thinks is dog

end

end

%% Results

view = [Actual; classFDA ; classPA];

% confusion matrix for FDA & PA

confFDA = zeros(2,2);

confPA = zeros(2,2);

for i = 1:length(Actual)

if Actual(i) == 1 %is a cat

if classFDA(i) == 1 %thinks cat correctly

confFDA(1,1) = confFDA(1,1) + 1;

else confFDA(1,2) = confFDA(1,2) + 1; %thinks dog incorrectly

end

if classPA(i) == 1 %thinks cat correctly

confPA(1,1) = confPA(1,1) + 1;

else confPA(1,2) = confPA(1,2) + 1; %thinks dog incorrectly

end

20 AUSTIN ADAMS AND AMY MULGREW

else

if classFDA(i) == 0 %thinks dog correctly

confFDA(2,2) = confFDA(2,2) + 1;

else confFDA(2,1) = confFDA(2,1) + 1; %thinks cat incorrectly

end

if classPA(i) == 0 %thinks dog correctly

confPA(2,2) = confPA(2,2) + 1;

else confPA(2,1) = confPA(2,1) + 1; %thinks cat incorrectly

end

end

end

time = toc;

Appendix I. Principal Component Analysis

%% Principal Component Analysis

% Written by Amy Mulgrew

function [AX,U,D,XEnsAvg] = PCA(X,EnergyRetained)

% function PCA.m

% input: X matrix, desired energy retained

% output: AX (reduced set of coefficients for X in KL basis)(DxP),

% and U (reduced set of eigenvectors/KL Basis)(NxD),

% and D (D value that retains the desired energy)

[N P]= size(X);

X = double(X);

XEnsAvg = (1/P)*sum(X,2); %calculate Ensemble Average

X = X - repmat(XEnsAvg,1,P); %mean subtract X

[U,sigma,V] = svd(X,0); % expensive calculation

AX = sigma*V’; % these are the expansion coefficients for X in KL Basis

evals = (diag(sigma)).^2;

% picks a D value based off retaining 99% Energy like in HW2

percent = .01*EnergyRetained;

D=1;

for i = 1:P

Si = evals(1:i,:);

E(i) = sum(Si)/sum(evals);

MATH 695 FINAL 21

if E(i) < percent

D = D+1;

end

end

D = D - 1;

AX = AX(1:D,:);

Appendix J. Principal Angle Finder

%% This code finds the principal angle, theta, between the subspaces input

% Written by Amy Mulgrew

%Input: X, Y (two matrices with same number of rows)

%Ouput: theta

function [theta] = PrincipalAngles(X,Y)

p = size(X,2);

q = size(Y,2);

% SVD for cosine

[Qx,R]=qr(X,0);

[Qy,R]=qr(Y,0);

M = (Qx)’*Qy;

C = svd(M,0);

rkX = rank(Qx);

rkY = rank(Qy);

if rkX >= rkY;

B = Qy - Qx*((Qx)’*Qy);

else

B = Qx - Qy*((Qy)’*Qx);

end

%SVD for sine

S = svd(B,0);

S = sort(S);

p = min(p,q);

22 AUSTIN ADAMS AND AMY MULGREW

theta = zeros(p,1); % initialize theta

for i = 1:p

if (C(i))^2 < .5

theta(i) = acos(C(i));

elseif (S(i))^2 <= .5

theta(i) = asin(S(i));

end

end

Appendix K. Optimal projection for FDA

%% This code finds the optimal projection w for FDA

% Written by Amy Mulgrew

%% Input: catsKL, dogsKL

% catsKL: the reduced dimension coefficients of the cats in the KL basis

% dogsKL: the reduced dimension coefficients of the dogs in the KL basis

%% Output: w

function [w] = finalFDA(catsKL, dogsKL)

n = zeros(1,2);

n(1) = size(catsKL,2);

n(2) = size(dogsKL,2);

m(:,1) = sum(catsKL,2)/(n(1)); % calculate the class-wise means

m(:,2) = (1/n(2))*sum(dogsKL,2);

%% create the between class scatter matrix: Sb

Sb = (m(:,2) - m(:,1))*(m(:,2) - m(:,1))’;

%% create the within class scatter matrix: Sw

dim = size(catsKL,1);

Sw = zeros(dim);

for i = 1:n(1)

new = (catsKL(:,i)-m(:,1))*(catsKL(:,i)-m(:,1))’;

Sw = Sw + new;

end

MATH 695 FINAL 23

for i = 1:n(2)

new = (dogsKL(:,i)-m(:,2))*(dogsKL(:,i)-m(:,2))’;

Sw = Sw + new;

end

%% solve generalized eigenvalue problem Sb*w = lambda*Sw*w

SwI = pinv(Sw);

S = SwI*Sb;

[Unew,Sigma,V] = svd(S,0);

w = Unew(:,1); %w is the eigenvector corresponding to the

%largest eigenvalue, so with svd, it is

% the first eigenvector

Department of Mathematics and Statistics, California State University, Long Beach, 1250
Bellflower Blvd., Long Beach, CA 90840-1001

