An Introduction to Small-World and Scale-Free Networks

DEREK SOLLBERGER

Department of Mathematics and Statistics California State University, Long Beach Derek.Sollberger@gmail.com

May 7, 2009

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

・ロト・西ト・山田・山田・山下

Outline

Small-World Networks

Specifics Fear-Mongering Results

Scale-Free Networks

Networks Without Scale Scale-Free Networks Abound The Rich Get Richer An Achilles Heel Scale-Free Epidemics From Theory to Practice

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

Examples

Before we looked into network patterns, dynamical systems have been used to study networks such as

- Biological oscillation
- Excitable media (unbounded growth, e.g. forest fire)
- Neural networks
- Spatial games (e.g. chess, checkers)

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

Examples

However, networks tend to be wired as highly-clustered systems, hence small-world networks can include

- Brains of tiny animals
- US power grid
- Film actors
- Disease studies

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

- INTRODUCTION
- NETWORKS WITHOUT Scale
- SCALE-FREE NETWORKS ABOUND
- THE RICH GET RICHER
- AN ACHILLES HEEL
- SCALE-FREE EPIDEMICS
- FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ のの⊙

Heuristic Model

Regular

- n vertices
- k edges per vertex

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS

Scale-Free Networks

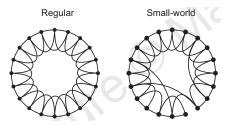
INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL


SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Heuristic Model

We rewire each edge at random with probability p
 [2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

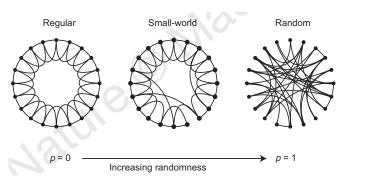
INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL


SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICI

CONCLUSION

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Heuristic Model

We can 'tune' the graph between regularity (p = 0) and disorder (p = 1)

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS FEAR-MONGERING

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

Definitions

To talk about network structure, let ...

- L(p) be the characteristic path length
- C(p) be the clustering coefficient

Loosely put, ..

- L(p) is the most common distance
- C(p) is the "cliquishness"

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS

FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

An Achilles Heel

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

Definitions

To talk about network structure, let ...

- L(p) be the characteristic path length
- C(p) be the clustering coefficient

Loosely put, ...

- L(p) is the most common distance
- C(p) is the "cliquishness"

[2]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS

FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT Scale

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

▲ロト ▲周 ト ▲ ヨ ト ▲ ヨ ト つのの

Model Behavior

To utilize one, connected graph, we require that

 $n > k > \ln n > 1$

With those bounds on *k*, as $p \rightarrow 0$ (regular lattice):

• $L(p) \approx L_0 \sim \frac{n}{2k}$ • $C(p) \approx C_0 \sim \frac{3}{4}$

As $p \rightarrow 1$ (toward disorder):

• $L(p) \approx L_{random} \sim \frac{\ln n}{\ln k}$

• $C(p) \approx C_{random} \sim \frac{k}{n}$

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS FEAR-MONGERIN

RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

Scale-Free Networks Abound

THE RICH GET RICHER

An Achilles Heel

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Model Behavior

To utilize one, connected graph, we require that

 $n > k > \ln n > 1$

With those bounds on k, as $p \rightarrow 0$ (regular lattice):

L(p) ≈ L₀ ~ n/2k
C(p) ≈ C₀ ~ 3/4
As p → 1 (toward disorder):
L(p) ≈ L_{random} ~ ln n/ln k
C(p) ≈ C_{random} ~ k/n

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS Fear-Mongeri

RESULTS

Scale-Free Networks

INTRODUCTION

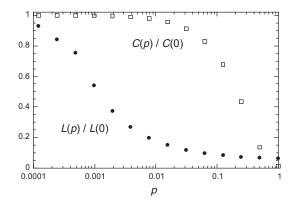
NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

An Achilles Heel

SCALE-FREE EPIDEMICS


FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

Tracking Disorder

[2]

Upon increasing disorder (p), we see that

- characteristic path length L drops dramatically
- clustering (C) remains virtually unchanged

NETWORKS

SOLLBERGER

SPECIFICS

Testing the Model

Table 1 Empirical examples of small-world networks

	Lactual	Lrandom	$C_{\rm actual}$	$C_{\rm random}$
Film actors	3.65	2.99	0.79	0.00027
Power grid	18.7	12.4	0.080	0.005
C. elegans	2.65	2.25	0.28	0.05

Characteristic path length *L* and clustering coefficient *C* for three real networks, compared to random graphs with the same number of vertices (*n*) and average number of edges per vertex (*k*). (Actors: n = 225,226, k = 61. Power grid: n = 4,941, k = 2.67. *C. elegans*: n = 282, k = 14.) The graphs are defined as follows. Two actors are joined by an edge if they have

In all three scenarios,

• $L_{actual} > L_{random}$ and $C_{actual} > C_{random}$

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

SPECIFICS

FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

・ロト・日本・日本・日本・日本・日本

Swine Flu!

http://www.thenetworkthinker.com/2009/04/
network-structure-of-swine-flu-pandemic.
html

A person can infect another person with infectiousness probability r. [2]

NETWORKS

SOLLBERGER

INTRODUCTION

SMALL-WORLD Networks

INTRODUCTION

SPECIFICS

FEAR-MONGERING

RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

Disease Power

The critical infectiousness r_{half} of a disease is the ability to infect half of the population based on infectiousness probability r. [2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTIO

SPECIFICS

FEAR-MONGERING

RESULTS

Scale-Free Networks

INTRODUCTION

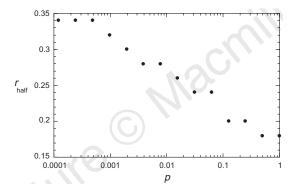
NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS


FROM THEORY TO PRACTIC

CONCLUSION

・ロト・日本・日本・日本・日本・日本

Disease Power vs. Randomness

The critical infectiousness r_{half} of a disease is the ability to infect half of the population based on infectiousness probability r.

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTIO

SPECIFICS

FEAR-MONGERING

RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

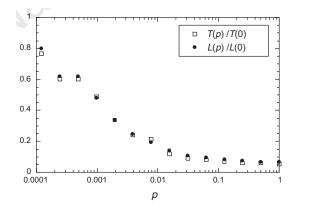
SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

An Achilles Heel

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC


CONCLUSION

[2]

●●● Ⅲ → Ⅲ → Ⅲ → ▲ ■ → → ■ → → ■ →

Vindication

For an "ideal" disease (r = 1), the time it takes for the disease to infect the entire population T(p) is represented by a curve that is similar to the L(p) curve.

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION

FEAR-MONGERING

RESULTS

Scale-Free Networks

INTRODUCTION

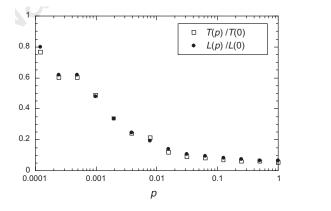
NETWORKS WITHOUT Scale

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

An Achilles Heel

SCALE-FREE EPIDEMICS


FROM THEORY TO PRACTIC

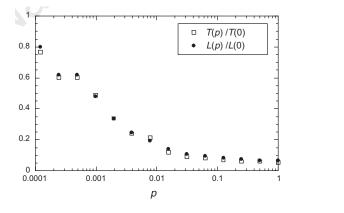
CONCLUSION

[2]

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

Punch Line

NETWORKS


RESULTS

Sollberger

An infectious disease spreads faster in a small world.

Even with a small amount of rewiring ("short cuts"), the world becomes quite small.

Punch Line

NETWORKS

RESULTS

Sollberger

- An infectious disease spreads faster in a small world.
- Even with a small amount of rewiring ("short cuts"), the world becomes quite small.

Some assumptions may have to be relaxed in other models, such as

- Not all groups have connected individuals
- The random rewiring may have an underlying distribution, such as 'majority-rule'.

[2]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION

FEAR-MONGERIN

RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

An Achilles Heel

SCALE-FREE EPIDEMICS

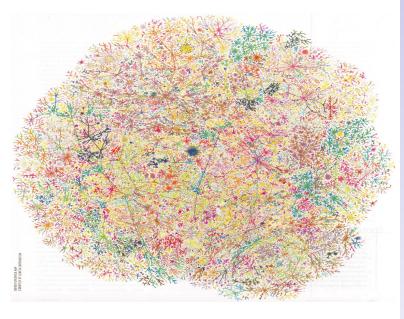
FROM THEORY TO PRACTIC

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks


INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

SCALE-FREE NETWORKS

INTRODUCTION

NETWORKS WITHOUT SCALE-FREE NETWORKS ABOUND THE RICH GET RICHER AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

CONCLUSION

●●● 画 《画》《画》《画》《回》

More Examples

neural networks

societies

internet

- power grids
- transportation systems

[1]

NETWORKS

SOLLBERGER

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

For Your Consideration

- How do malfunctioning nodes in genetics lead to cancer?
- How does diffusion occur so rapidly in social networks?
- How can some networks still function with failed nodes?

[1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE SCALE-FREE NETWORKS ABOUND THE RICH GET RICHER

THE KICH GET KICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

The Pattern

The World Wide Web:

- Many web pages have a few links (e.g. my website)
- A few webpages have many links (e.g. http://www.vahoo.com/)

Hollywood Actors:

- Many actors have been in a few films (e.g. Tim Hohn, "Dying Man #2" in Vlad & Antoinette)
- A few actors have been in many films (e.g. Kevin Bacon)

We say that this pattern represents <mark>scale-free</mark> networks. [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE-FREE NETWORKS ABOUND THE RICH GET RICHER AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

The Pattern

The World Wide Web:

- Many web pages have a few links (e.g. my website)
- A few webpages have many links (e.g. http://www.yahoo.com/)

Hollywood Actors:

- Many actors have been in a few films (e.g. Tim Hohn, "Dying Man #2" in Vlad & Antoinette)
- A few actors have been in many films (e.g. Kevin Bacon)

We say that this pattern represents scale-free networks. [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE-FREE NETWORKS ABOUND THE RICH GET RICHER AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

Assumptions

- No node is typical of another one
- Scale-free networks are resistant to accidental failures, but vulnerable to coordinated attacks
- There are underlying patterns for making connections and clustering

[1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

SCALE-FREE NETWORKS

INTRODUCTION

NETWORKS WITHOUT SCALE SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

Early Hypotheses

In 1959, Paul Erdós and Alfréd Renyi suggested modeling networks with random links.

Poisson distribution for the number of links for a node
 [1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

SCALE-FREE NETWORKS

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Mapping the Web

In 1998, Hawoong Jeong and Réka Albert set out to map the internet.

Web crawlers collected data on links

Some of the results included:

80% of webpages had fewer than 4 links, while < 0.01% of webpages had more than 1000 links.

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

・ロト・日本・山田・山田・山口・

Mapping the Web

In 1998, Hawoong Jeong and Réka Albert set out to map the internet.

Web crawlers collected data on links

Some of the results included:

80% of webpages had fewer than 4 links, while < 0.01% of webpages had more than 1000 links.

[1]

NETWORKS

SOLLBERGER

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

Conclusion

・ロト・西ト・山田・山田・山下

The US highway system resembles a random network.

Most of the nodes (cities) have the same number of outgoing links (highways) [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

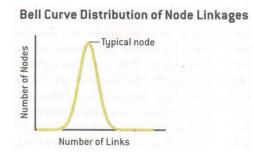
INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND


THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

Thus we can conjecture that a network's links per node follow a bell curve.

・ コ ト ・ 雪 ト ・ 目 ト ・ 日 ト

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

[1]

Airline routes resemble a scale-free network.

A few hubs have many outgoing routes. [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

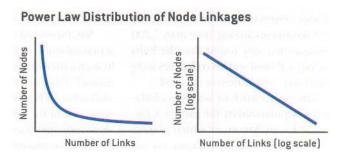
INTRODUCTION Specifics Fear-Mongering Results

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND


THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

It seems that the best trend to fit the data would be a power function.

[1]

 NETWORKS

SOLLBERGER

NETWORKS WITHOUT

NETWORKS

SOLLBERGER

INTRODUCTION

SMALL-WORLD Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

CONCLUSION

Examples of Scale-Free Networks

	NETWORK	NODES	LINKS
	Cellular metabolism	Molecules involved in burning food for energy	Participation in the same biochemical reaction
moore	Hollywood	Actors	Appearance in the same movie
	Internet	Routers	Optical and other physical connections
200000000000000000000000000000000000000	Protein regulatory network	Proteins that help to regulate a cell's activities	Interactions among proteins
	Research collaborations	Scientists	Co-authorship of papers
	Sexual relationships	People	Sexual contact
	World Wide Web	Web pages	URLs

Revising the Random-Network Model

We still need to explain why hubs exist and grow.

Assuming a power function model $f(x) = x^n$, what should the exponent be?

Empirical tests have found results between 2 and 3.
 [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICE

Revising the Random-Network Model

We still need to explain why hubs exist and grow.

Assuming a power function model $f(x) = x^n$, what should the exponent be?

Empirical tests have found results between 2 and 3.

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION Specifics Fear-Mongering Results

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICE

Revising the Random-Network Model

We will relax a couple of the assumptions from the old Erdós and Rényi model. [1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Dynamical Systems

Networks grow over time. [1]

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

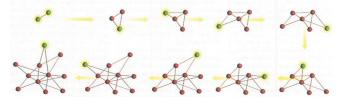
INTRODUCTION

NETWORKS WITHOUT Scale

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC


CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Not All Nodes Are Equal

Linking toward more nodes can be affected by "preferential attachment".

A SCALE-FREE NETWORK grows incrementally from two to 11 nodes in this example. When deciding where to establish a link, a new node (green) prefers to attach to an existing node (red) that already has many other connections. These two basic mechanisms—growth and preferential attachment—will eventually lead to the system's being dominated by hubs, nodes having an enormous number of links.

[1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

CONCLUSION

・ロト・雪 ト・ヨー うへぐ

Small

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

NETWORKS SOLLBERGER

SCALE-FREE NETWORKS

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICI

CONCLUSION

Network growth and preferential attachment \Rightarrow hubs.

The authors' work with computer simulations corroborated this trend. [1]

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

Network growth and preferential attachment \Rightarrow hubs.

The authors' work with computer simulations corroborated this trend. [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT Scale

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICI

CONCLUSION

Winner Take All?

It appears that the preferential attachment tends to be linear.

A new node is twice as likely to link to an existing node that has twice as many connections as its neighbor

If that mechanism is faster, then one hub would gain links from all the new nodes, hence a "winner take all" scenario. [1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

- INTRODUCTION
- NETWORKS WITHOUT Scale
- SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICE

What Makes a Network Robust?

Complex networks (and their nodes), such as

- power grids (power plants)
- communication webs (routers)
- living systems (proteins)

seem to be resilient versus accidental failures. [1]

NETWORKS

Sollberger

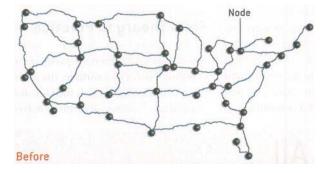
INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION


NETWORKS WITHOUT Scale

Scale-Free Networks Abound

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICE

Random Network: Accidental Node Failure

Nearly homogeneous topology [1]

NETWORKS

Sollberger

INTRODUCTION

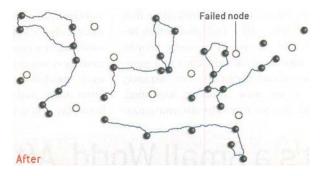
Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE


SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

CONCLUSION

Random Network: Accidental Node Failure

Quick deterioration into disconnected, noncommunicating islands [1]

NETWORKS

SOLLBERGER

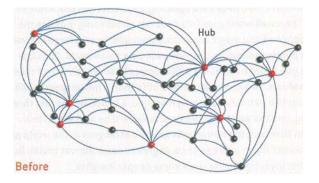
INTRODUCTION

Small-World Networks

INTRODUCTION Specifics Fear-Mongering Results

Scale-Free Networks

INTRODUCTION


NETWORKS WITHOUT SCALE

Scale-Free Networks Abound

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

Scale-Free Network: Accidental Node Failure

Inhomogeneous topology [1]

NETWORKS

SOLLBERGER

NTRODUCTION

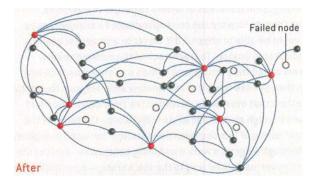
Small-World Networks

INTRODUCTION Specifics Fear-Mongering Results

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE


SCALE-FREE NETWORKS Abound

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

CONCLUSION

Scale-Free Network: Accidental Node Failure

Smaller nodes are disrupted, but the larger ones remain [1]

NETWORKS

SOLLBERGER

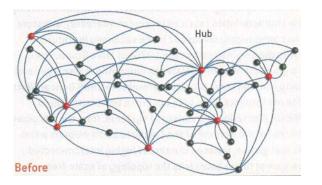
INTRODUCTION

Small-World Networks

INTRODUCTION Specifics Fear-Mongering Results

Scale-Free Networks

INTRODUCTION


NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICI

Scale-Free Network: Attack on Hubs

Prior knowledge of the hubs can lead to a coordinated attack [1]

NETWORKS

Sollberger

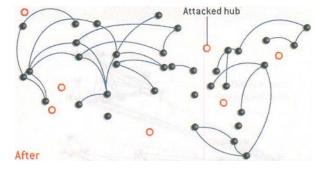
NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION


NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICI

Scale-Free Network: Attack on Hubs

Even a robust, scale-free network can be disrupted [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION Specifics Fear-Mongering Results

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

Scale-Free Networks Abound

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTIC

CONCLUSION

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Coordinated Attacks

Good intentions ...

... protect hubs

Evil intentions ...

... attack hubs

1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICI

CONCLUSION

◆□▶ ◆□▶ ◆ □▶ ◆ □ ● ● ● ●

Coordinated Attacks

Good intentions ...

... protect hubs

Evil intentions ...

... attack hubs

[1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERIN RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL SCALE-FREE EPIDEMICS

CONCLUSION

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで

Viruses

In a scale-free network, the threshold is zero.

- Diseases can appear at any time
- Computer viruses cannot be completely eradicated

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

An Achilles Heel

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICI

CONCLUSION

Viruses

In a scale-free network, the threshold is zero.

- Diseases can appear at any time
- Computer viruses cannot be completely eradicated
 [1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICE

CONCLUSION

Viruses

In a scale-free network, the threshold is zero.

- Diseases can appear at any time
- Computer viruses cannot be completely eradicated

[1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICI

CONCLUSION

Can knowledge of an underlying, network structure help us study medicine?

It makes sense to immunize the people act as hubs ...

... but who are the hubs?

[1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICI

Example of a Coordinated Attack

In the 1950s, Pfizer studied the rate at which doctors prescribe new drugs.

Perhaps, more studies into scale-free networks can give a mathematical framework to such a process. [1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICE

Counterexamples

Some examples of networks that are not scale-free (i.e. do not follow the power function model) include

- US highway system
- Power grid
- Crystal lattice
- Small food webs

The reasons include

- Man-made projects start off small, and are then scaled for larger projects
- With few choices, there could be less preferential attachment

[1]

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

Scale-Free Networks Abound

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICE

Counterexamples

Some examples of networks that are not scale-free (i.e. do not follow the power function model) include

- US highway system
- Power grid
- Crystal lattice
- Small food webs

The reasons include

- Man-made projects start off small, and are then scaled for larger projects
- With few choices, there could be less preferential attachment

[1]

NETWORKS

Sollberger

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICE

Future Model Updates

Relaxing more assumptions, we could attempt to get more accurate models

- Consider a network's diameter
- Measure speed/strength of links
- Node content is not homogeneous

[1]

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT Scale

Scale-Free Networks Abound

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICE

Albert-Laszlo Barabasi and Eric Bonabeau. Scale-free networks.

Scientific American, 288:50–59, 2003.

Duncan J. Watts and Steven H. Strogatz. Collective dynamics of 'small-world' networks. *Nature*, 393(6684):409–410, 1998.

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION Specifics Fear-Mongerin Results

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT Scale

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

I was in a community service club

with Kevin Lin (photo used with permission)

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

I was in a community service club

with Kevin Lin (photo used with permission)

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲□▶ ▲目▶ ▲目▶ ▲□ ● のへで

who was in Berkeley engineering

with Tiffany Shiau (photos used with permission)

NETWORKS

SOLLBERGER

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

・ロト・西・・田・・田・・日・

who was in Berkeley engineering

with Tiffany Shiau (photos used with permission)

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

・ロト・西・・田・・田・・日・

who played "Factory Worker #2" in One Child (2008)

with Joanne Chew (from http://www.imdb.com/media/ rm1190696448/nm2415065)

NETWORKS

SOLLBERGER

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

who played "Factory Worker #2" in One Child (2008)

with Joanne Chew
(from http://www.imdb.com/media/
rm1190696448/nm2415065)

NETWORKS

SOLLBERGER

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへで

who played "Park Twin #1" in Street Kings (2008)

with Forest Whitaker
(from http://www.imdb.com/media/
rm1190696448/nm2415065 and http://www.imdb
com/media/rm2685243648/nm0001845)

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION Specifics Fear-Mongering Results

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

who played "Park Twin #1" in Street Kings (2008)

with Forest Whitaker
(from http://www.imdb.com/media/
rm1190696448/nm2415065 and http://www.imdb.
com/media/rm2685243648/nm0001845)

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

who played "Happiness" in The Air I Breathe (2007)

with Kevin Bacon!
(from http://www.imdb.com/media/
rm2685243648/nm0001845 and http://www.imdb
com/media/rm1837931776/nm0000102)

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT SCALE

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTICI

CONCLUSION

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

who played "Happiness" in The Air I Breathe (2007)

with Kevin Bacon!
(from http://www.imdb.com/media/
rm2685243648/nm0001845 and http://www.imdb.
com/media/rm1837931776/nm0000102)

NETWORKS

Sollberger

NTRODUCTION

Small-World Networks

INTRODUCTION SPECIFICS FEAR-MONGERING RESULTS

Scale-Free Networks

INTRODUCTION

NETWORKS WITHOUT Scale

SCALE-FREE NETWORKS ABOUND

THE RICH GET RICHER

AN ACHILLES HEEL

SCALE-FREE EPIDEMICS

FROM THEORY TO PRACTIC

CONCLUSION

・ロト・四ト・ヨト・ヨー もくの

NETWORKS

SOLLBERGER

INTRODUCTION

Small-World Networks

RODUCTION ECIFICS

SULTS

ALE-FREE TWORKS

RODUCTION TWORKS WITHOUT

SCALE-FREE NETWORKS ABOUND THE RICH GET RICHER AN ACHILLES HEEL SCALE-FREE EPIDEMICS FROM THEORY TO PRACTICI

CONCLUSION

The End

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ● のへで