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BACKGROUND OF GPS

What is GPS?

GPS: Global Positioning System
a satellite based navigation system
computes location using radio frequencies
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1ST TAKE ON GPS GEOMETRIC MODEL

Geometric model

variant of the 3-D triangulation
position determined based on distance from 3 other points

position is GPS receiver location
3 other points are satellites

[1]
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1ST TAKE ON GPS GEOMETRIC MODEL

How to find distances?

position is restricted to lie on a sphere centered at the fixed point
(satellite position)
must be true ∀ fixed point (i.e. ∀ satellite)

[1]
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1ST TAKE ON GPS GEOMETRIC MODEL

Remember:

intersection of 2 spheres is a circle
generally intersection of 3 spheres leads to 2 points

Figure: from Wikipedia article on GPS
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1ST TAKE ON GPS GEOMETRIC MODEL

How to choose between 2 points?

Want position to be on the surface of the earth
one will land in space or within the earth

=⇒ take the position location that makes the most sense
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1ST TAKE ON GPS GEOMETRIC MODEL

Problem:

GPS has a triangulation in space AND time
new visualization: 3-D space-time

think of horizontal plane representing space
think of vertical plane representing time
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1ST TAKE ON GPS GEOMETRIC MODEL

Use cones instead of spheres

intersection of 2 cones lies in a plane
having 3 cones would result in 2 planes

intersection of 3 cones results in a line
need another cone to intersect line
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1ST TAKE ON GPS GEOMETRIC MODEL

How can we find the position?

now need 4 satellites
leads to 4 similar equations (based on distance)
corresponds to solving underdetermined system of linear
equations

[1]
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1ST TAKE ON GPS EXAMPLE

Quick Example

Table 1. Satellite data.

Satellite Position Time

1 (1, 2, 0) 19.9
2 (2, 0, 2) 2.4
3 (1, 1, 1) 32.6
4 (2, 1, 0) 19.9

time is the time sent
Assumption

signals travel at the speed of light
(

0.047 earth radii
millisecond

)
[1]
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1ST TAKE ON GPS EXAMPLE

Getting the distance

take 1st satellite, get 2 equations for distance:

d = 0.047 (t − 19.9)

d =

√
(x − 1)2 + (y − 2)2 + (z − 0)2

=⇒ 0.047 (t − 19.9) =

√
(x − 1)2 + (y − 2)2 + (z − 0)2

[1]
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1ST TAKE ON GPS EXAMPLE

Expand and rearrange

2x + 4y − 2
(

0.0472
)

(19.9)2 t = 12 + 22 + 02 + x2 + y2 + z2− 0.0472t2

All 4 equations have a similar form

[1]
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1ST TAKE ON GPS EXAMPLE

Underdetermined System

remove quadratic terms from equations
subtract the 1st equation from the others

2x − 4y + 4z + 2
(
0.0472) (17.5) t = 8− 5 + 0.0472 (19.92 − 2.42)

0x − 2y + 2z − 2
(
0.0472) (12.7) t = 3− 5 + 0.0472 (19.92 − 32.62)

2x − 2y + 0z + 2
(
0.0472) (0) t = 5− 5 + 0.0472 (19.92 − 19.92)

notice there are 4 variables and 3 equations
will not get a unique solution

can get 3 variables in terms of the 4th

[1]
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1ST TAKE ON GPS EXAMPLE

Matrix form

The system has the form:2 −4 4 .077 3.86
0 −2 2 −.056 −3.47
2 −2 0 0 0


Its reduced row echelon form is:1 0 0 .095 5.41

0 1 0 .095 5.41
0 0 1 .067 3.67


[1]
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1ST TAKE ON GPS EXAMPLE

Solution:

The general solution is:

x = 5.41− .095t , y = 5.41− .095t , z = 3.67− .067t , t free

After substituting into the original equation, get

0.02t2 − 1.88t + 43.56 = 0

get 2 solutions: t = 43.1,50.0
⇒ (1.317,1.317,0.790) , (.667, .667, .332)

Remember units in earth radii
1st solution puts position outside the earth
2nd solution is the position

[1]
KRISTA KATAYAMA (CSULB) GPS MAY 14, 2009 16 / 67



1ST TAKE ON GPS EXAMPLE

Remarks:

this method not actually used to determine position with GPS
does not take into account errors

KRISTA KATAYAMA (CSULB) GPS MAY 14, 2009 17 / 67



MORE ACCURATE, BUT STILL SIMPLE MODEL

Things to consider:

Factor in errors
Earth’s atmosphere is not a vacuum
cannot use the speed of light for velocity

Satellite’s position
consider angle of signals

Will see another error appear: clock errors

[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL SIMPLE 2D MODEL FROM THOMPSON

Look at 2-D model

A different velocity is needed for area around position
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MORE ACCURATE, BUT STILL SIMPLE MODEL SIMPLE 2D MODEL FROM THOMPSON

Initial Setup

A person stands on a gravel plot within a circular lot
lot has a radius of 100 ft
mean distance from person’s position to edge of gravel is 20 ft
cars drive on a road that borders the circular lot

Messengers leave from the cars on the road and walk to the person
move at 5 ft/sec on the pavement
move at 4 ft/sec on gravel

[2]

KRISTA KATAYAMA (CSULB) GPS MAY 14, 2009 20 / 67



MORE ACCURATE, BUT STILL SIMPLE MODEL SIMPLE 2D MODEL FROM THOMPSON

Messenger paths

[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL SIMPLE 2D MODEL FROM THOMPSON

∆t : time difference between departure and arrival
ε: fixed error of watch (in seconds)

Estimate of the distance travelled:

d (∆t , ε) = 20 ft + (∆t sec − ε sec − 5 sec) 5
ft

sec
(x0 − 70.7)2 + (y0 − 70.7)2 = d (20.2, ε)2

(x0 − 70.7)2 + (y0 + 70.7)2 = d (29.5, ε)2

(x0 − 0)2 + (y0 + 100)2 = d (32.2, ε)2


[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL SIMPLE 2D MODEL FROM THOMPSON

Clock Errors

Solve numerically for the position starting with ε = 0
get a solution when position is inside the lot
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MORE ACCURATE, BUT STILL SIMPLE MODEL CONVERT TO 3-D

Change the parameters

circular lot =⇒ region within satellite orbits
cars =⇒ satellites
messengers =⇒ radio waves
gravel =⇒ Earth’s atmosphere
origin =⇒ center of the Earth

Will need at least 4 satellites

[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL CONVERT TO 3-D

Change the variables

Sı̇ = (Xı̇,Yı̇,Zı̇) =⇒ position of satellite
Tı̇ =⇒ time when satellite ı̇ transmits a signal
T ′ı̇ =⇒ time signal is received
∆tı̇ =⇒ travel time
ε =⇒ clock time error of the receiver

Typically only one value of ε will allow the spheres to have a common
point

[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL CONVERT TO 3-D

New system to solve


(x0 − X1)2 + (y0 − Y1)2 + (z0 − Z1)2 = d (∆t1, ε)2

(x0 − X2)2 + (y0 − Y2)2 + (z0 − Z2)2 = d (∆t2, ε)2

(x0 − X3)2 + (y0 − Y3)2 + (z0 − Z3)2 = d (∆t3, ε)2

(x0 − X4)2 + (y0 − Y4)2 + (z0 − Z4)2 = d (∆t4, ε)2


[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL CONVERT TO 3-D

What to do with answer?

Need to change answer (in rectangular coordinates) to spherical
coordinates

Will then have:
latitude
longitude
altitude (above sea level)
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MORE ACCURATE, BUT STILL SIMPLE MODEL CONVERT TO 3-D

What is expected of the receiver?

Expectations:
receive satellite time and position information
maintain a steady clock (not necessarily accurate)
find 4 satellites with “good” position ranges
approximate a numerical solution for 4 equation system
transform coordinates

Note: with today’s technology, these expectations are not
unreasonable.

[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL PROBLEMS

Variability of Positions

Position estimation varies with repeated attempts

Caused by:
random measurement errors
selection of different satellites
atmosphere effects

[2]
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MORE ACCURATE, BUT STILL SIMPLE MODEL PROBLEMS

Ways to deal with errors

PPS - Precise Positioning Service
uses multiple signals
for military use only

DGPS - Differential GPS
2 receivers
1 has known fixed position
1 moves around

[2]
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REALISTIC PARAMETERS OF GPS

Design of GPS

Original Design:
18 satellites
6 orbits
=⇒ 3 satellites per orbit

Current Design (as of 1998):
4 satellites in each orbit
same general setup as the original

[2]
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REALISTIC PARAMETERS OF GPS

Design of GPS

[2]
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REALISTIC PARAMETERS OF GPS

Different Carriers and Codes:

Carriers - there are two carrier radio waves:
L1, with frequency 1575.42 MHz
L2, with frequency 1227.6 MHz

Pseudo-random Codes that are superimposed on the carriers:
On the L1 carrier:

C/A code: Coarse Acquisition code
P-code: Precision code

On the L2 carrier:
P-code: Precision code

Note: the C/A code is for civilian users; only authorized users have
access to the P-code

[3]
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REALISTIC PARAMETERS OF GPS

What are the carriers and codes used for?

What information is given from the carrier?
position of the satellite
the exact time the signal was transmitted

How is the code used?
Allows a GPS receiver to measure the travel time of the signal
from the satellite to the receiver.

[3]
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REALISTIC PARAMETERS OF GPS

What do they look like?
 
 
 
 
Carrier (L1) 
 
 
 
Code (C/A) 
 
 
 

Wavelength 
0.2 m 

+1 
-1 

+1
-1 

300 m 
"chip" length
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REALISTIC PARAMETERS OF GPS

How to read signals from different satellites on the
same frequency?

Each satellite is given its own unique pseudo-random code!
avoids jamming with other signals
avoids receiver comparison to wrong signal
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REALISTIC PARAMETERS OF GPS

How to determine position?

Follow these general steps:
1 Extract information from the satellite signal
2 Compare information with receiver information
3 Determine ∆t from information correlation
4 Compute the distance from the satellite to the receiver
5 Repeat for every “good” satellite

KRISTA KATAYAMA (CSULB) GPS MAY 14, 2009 37 / 67



REALISTIC PARAMETERS OF GPS

How is the information used?

There are 2 types of methods used to determine position:
Code Pseudorange
Carrier Phase

[3]
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REALISTIC PARAMETERS OF GPS

Which method is better?

Code Pseudorange gives an approximation to the true range between
the receiver and satellite using the C/A pseudo-random code

relatively easy calculation
results are not very accurate

Carrier Phase gives an approximation to the true range between the
receiver and satellite using one of the carrier frequencies

uses the L1 carrier for non-military receivers
requires a series of observations
can get better accuracy
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REALISTIC PARAMETERS OF GPS

Comparing signals

Distance 

t0 

t0

t1

t1 

# Full 
Final 
Portion 

receiver generates signal at same time as satellite
carrier frequency hard to count since it’s so uniform
cycles of code are wide - plenty of room to ‘slop’
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REALISTIC PARAMETERS OF GPS

Best Results

Use both
Use codepseudorange to get “close”
Use carrier signal to get “good” accuracy
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DGPS THE BASICS

Components of DGPS:

1 Space Segment
satellites which broadcast the signal

2 Control Segment
steers the whole system

3 User Segment
many types of receivers

[3]
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DGPS THE BASICS

General Idea

Use 2 receivers
1 stationary
1 moving

stationary position is known exactly
other is estimated
use stationary receiver to send out “correction” term to other
receiver

[3]
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DGPS THE BASICS

Expected errors:

ionospheric range error
tropospheric range error
satellite clock range error
receiver clock range error
multipath error
noise

[3]
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DGPS THE BASICS

Assumptions

distance (“baseline”) between 2 receivers is short, i.e. ≈ 30km

Why?
receivers then have relatively the same ionospheric and
tropospheric refraction errors
these errors are essentially eliminated when taking the difference
of the 2 signals
also gets rid of satellite clock error

This is considered “Single Differencing”

[3]
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DGPS THE BASICS

Double Differencing

Find single differenced measurements from all “good” satellites
choose one satellite to be the “reference” satellite
take the difference of each single differenced measurement from
the “reference” satellite

[3]
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DGPS THE BASICS

Pros/Cons of Double Differencing

Pro:
eliminates the 2 receivers’ clock errors

Cons:
numerically slightly dubious (makes measurements correlated)
gives unnecessary prominence to “reference” satellite

[3]
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DGPS SPECIFIC DGPS METHOD

Parameters

use carrier phase measurement (L1 signal)
use single differencing (with assumptions)
use recursive least squares approach to estimate position
assume number of “good” satellites remain constant

[3]
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DGPS SPECIFIC DGPS METHOD

Breaking down the math model

�x

� �
Receiver s Receiver r

x/2 x/2�
�

�
�

�
�

�
�

�
�

�
�

��

Vector from receiver s
to satellite i, hi

s

�
�

�
�

�
�

�
�

�
�

�
�
��

hi hi
r

�
�
�
�
�
�
�
�
�
�
�
�
��

Satellite i

���

Goal: find baseline vector x

[3]
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DGPS SPECIFIC DGPS METHOD

Breaking down the math model

hı̇
s is the vector from receiver s to satellite ı̇

eı̇ is the unit vector from the midpoint of the baseline to satellite ı̇
ρı̇

s is the range in wavelengths from receiver s to satellite ı̇
λ is the wavelength

µı̇ = ‖hı̇
s+hı̇

r ‖
‖hı̇

s‖+‖hı̇
r ‖
≈ 1

1+.28×10−6 (normally rounded to 1)

[3]
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DGPS SPECIFIC DGPS METHOD

Finding ρı̇s, ρı̇r

Get this equation: (
µı̇eı̇

)T
x = λ

(
ρı̇

s − ρı̇
r
)

initially find fractional phase difference (part of wavelength)
between generated and received signal
track how phase difference changes

[3]
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DGPS SPECIFIC DGPS METHOD

New variables

ηı̇
s (tk ): carrier phase measurement

from receiver s to satellite ı̇ at time tk
αı̇

s: “integer ambiguity”
initial number of full cycles between satellite ı̇ and receiver s at t1

Ideally want
ρı̇

s (tk ) = ηı̇
s (tk ) + αı̇

s

but need to factor in errors

ηı̇
s (tk ) + αı̇

s = ρı̇
s (tk )− ιı̇s (tk ) + τ ı̇

s (tk ) + β ı̇
(
tk − t ı̇k

)
+ β ı̇

s (tk ) + ν ı̇
s (tk )

[3]
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DGPS SPECIFIC DGPS METHOD

Take the difference between stationary and moving
receiver carrier phase measurements

ηı̇
k = λ−1 (µı̇

keı̇
k
)T

xk − αı̇ + βk + ν ı̇
k

Assume ν ı̇
k are unbiased independently distributed noises for different

satellites and epochs

[3]
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DGPS SPECIFIC DGPS METHOD

Simplify

yk = Ekxk − a + eβk + υk

where υk ∼ N
(
0, σ2Im

)
Add in all epochs (time steps) up to k to get


y1
y2
·

yk

 =


e E1 −Im

e E2 −Im
· · ·

e Ek −Im





β1
x1
β2
x2
·
·
βk
xk
a


+


υ1
υ2
·
υk



Remember, want to find xks

[3]
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DGPS SPECIFIC DGPS METHOD

Using LS approach

recall: coefficient matrix must have full column rank to get a
unique LS solution
use orthogonal transformations of single differences
Using Householder transformations

P ≡ I − u
(

2
uT u

)
uT , u ≡ e1 − e/

√
m

[3]
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DGPS SPECIFIC DGPS METHOD

Using LS approach

thus P has the form:

P =

[
1√
m

eT√
m

e√
m Im−1 − eeT

m−√m

]

=


1√
m

1√
m

1√
m ·

1√
m 1− 1

m−√m − 1
m−√m ·

1√
m − 1

m−√m 1− 1
m−√m ·

· · · ·


=
[
p1, P2

]
[3]
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DGPS SPECIFIC DGPS METHOD

Apply PT to:


y1
y2
·

yk

 =


e E1 −Im

e E2 −Im
· · ·

e Ek −Im





β1
x1
β2
x2
·
·
βk
xk
a


+


υ1
υ2
·
υk



[3]
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DGPS SPECIFIC DGPS METHOD

Apply PT to:

The result is:



pT
1 y1

pT
1 y2
·

pT
1 yk

PT
2 y1

PT
2 y2
·

PT
2 yk


=



1 pT
1 E1

1 pT
1 E2

· ·
1 pT

1 Ek
PT

2 E1 Im−1
PT

2 E2 Im−1
· ·

PT
2 Ek Im−1





γ1
γ2
·
γk
x1
x2
·

xk
d


+



pT
1 υ1

pT
1 υ2
·

pT
1 υk

PT
2 υ1

PT
2 υ2
·

PT
2 υk


[3]
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DGPS SPECIFIC DGPS METHOD

Simpler model

Want to find xks, so solve


PT

2 y1
PT

2 y2
·

PT
2 yk

 =


PT

2 E1 Im−1
PT

2 E2 Im−1
· ·

PT
2 Ek Im−1




x1
x2
·

xk
d

+


PT

2 υ1
PT

2 υ2
·

PT
2 υk


where d = −PT

2 a

[3]
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DGPS SPECIFIC DGPS METHOD

Simpler model

Note: Coefficient matrix has size k (m − 1) × (3k + m − 1)

=⇒ has full column rank if k (m − 1) ≥ 3k + m − 1, i.e.

m ≥ 4 +
3

k − 1

Satellite requirements.

# of epochs (k) 2 3 4 5 ≥ 6
Minimum # of satellites 7 6 5 5 5

[3]
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DGPS SPECIFIC DGPS METHOD

Problem

When switching from a to d , lose integer nature
want to keep, so rewrite system
define double difference integer ambiguity as aDD

rewrite PT
2 and d such that:

PT
2 ≡ −FJ, d ≡ −PT

2 a = FJa = FaDD

where

F ≡ Im−1 −
eeT

m −
√

m
, J ≡ [e,−Im−1]

[3]
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DGPS SPECIFIC DGPS METHOD

Remedy

replace d to get:


PT

2 y1
PT

2 y2
·

PT
2 yk

 =


PT

2 E1 F
PT

2 E2 F
· ·

PT
2 Ek F




x1
x2
·

xk
aDD

+


PT

2 υ1
PT

2 υ2
·

PT
2 υk


[3]
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DGPS SPECIFIC DGPS METHOD

QR Factorization

Using QT
j =

[
Uj
Wj

]
,

QT
j

(
PT

2 Ej

)
=

[
Rj
0

]
, QT

j

(
PT

2 yj

)
=

[
uj
wj

]
Applying this to the previous system results with:

u1
u2
·

uk
w1
w2
·

wk


=



R1 U1F
R2 U2F

· ·
Rk UkF

W1F
W2F
·

WkF




x1
x2
·

xk
aDD

+



U1PT
2 υ1

U2PT
2 υ2
·

UkPT
2 υk

W1PT
2 υ1

W2PT
2 υ2
·

WkPT
2 υk


[3]
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DGPS SPECIFIC DGPS METHOD

QR Factorization

Note:

Need to 1st solve equation below before solving for x1, ..., xk
w1
w2
·

wk

 =


W1F
W2F
·

WkF

aDD +


W1PT

2 υ1
W2PT

2 υ2
·

WkPT
2 υk


[3]
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DGPS SPECIFIC DGPS METHOD

Find LS Estimates

aDD
k is LS estimate of aDD

xj|k , j = 1, ..., k are LS estimates of xj , j = 1, ..., k
want to solve the following system:

Rjxj|k = uj − UjFaDD
k , j = 1, ..., k

need to find aDD
k

[3]
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DGPS SPECIFIC DGPS METHOD

More orthogonal transformations

Using a sequence of Householder transformations, need to solve the
upper triangular system

SkaDD
k = ŵk

where Sk is nonsingular, upper triangular, and has (m − 1) rows

After aDD
k is obtained, can solve for xj|k [3]
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DGPS SPECIFIC DGPS METHOD

Other factors to consider:

Computing the initial points
Approximating the covariance matrices
Fixing integer ambiguities
Handling satellite rising and setting

not having a constant number of satellites

[3]
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