Continuous Wavelet Transform: ECG Recognition Based on Phase and Modulus Representations

EDGAR GONZALEZ

Based on the paper by: Lofti Senhadjii, Laurent Thoroval, and Guy Carrault [2]

May 12, 2009

伺 とく ヨ とく ヨ と

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples Conclusion References

Outline

Introduction

The Square Modulus and Phase

Square Modulus Phase Behavior

Examples

Symmetrical Properties Without Symmetrical Properties ECG Signal

Conclusion

References

E >

Introduction

Biomedical signals:

- Fundamental to Analyzing Diseases
- Generally Time-Varying
- Non-stationary
- Usually Noisy

3 ×

Introduction The Square Modulus and Phase Examples Conclusion References

The Analyzing Tools:

- Fourier Transform
- Continuous Wavelet Transform (CWT)

ヘロト ヘポト ヘヨト ヘヨト

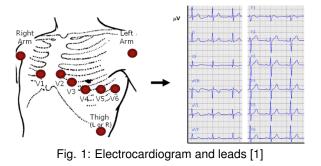
The Analyzing Tools:

- Fourier Transform
- Continuous Wavelet Transform (CWT)

・ 戸 ト ・ ヨ ト ・ ヨ ト

Electrocardiography (ECG)

ECG is the "recording of the electrical activity of the heart over time via skin electrodes." [1]



Facts of ECG:

Voltage measured between pairs of electrodes

- Usually 12-Leads
- Diagnose a wide range of heart conditions
- and much more...

・ 戸 ト ・ ヨ ト ・ ヨ ト ・

Facts of ECG:

- Voltage measured between pairs of electrodes
- Usually 12-Leads
- Diagnose a wide range of heart conditions
- and much more...

・ 何 ト ・ ヨ ト ・ ヨ ト -

Facts of ECG:

- Voltage measured between pairs of electrodes
- Usually 12-Leads
- Diagnose a wide range of heart conditions

and much more...

伺 とく ヨ とく ヨ と

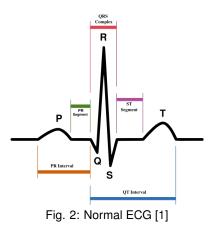
Facts of ECG:

- Voltage measured between pairs of electrodes
- Usually 12-Leads
- Diagnose a wide range of heart conditions
- and much more...

(▲ 国)> (▲ 国)>

Electrocardiograph

For a normal heart beat, the ECG usually looks like below:



GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

э

Wavelets are used on ECG to:

- Enhance late potentials
- Reduce noise
- QRS detection
- Normal & abnormal beat recognition

・ 戸 ト ・ ヨ ト ・ ヨ ト

Wavelets are used on ECG to:

- Enhance late potentials
- Reduce noise
- QRS detection
- Normal & abnormal beat recognition

・ 戸 ト ・ ヨ ト ・ ヨ ト

Wavelets are used on ECG to:

- Enhance late potentials
- Reduce noise
- QRS detection
- Normal & abnormal beat recognition

伺 とく ヨ とく ヨ と

Wavelets are used on ECG to:

- Enhance late potentials
- Reduce noise
- QRS detection
- Normal & abnormal beat recognition

(七日)) (日日)

Layout of Presentation

- 1. Theoretical
 - CWT with complex analysis function
 - CWT square modulus (scalogram)
 - Local Symmetric Properties

2. See some examples

★ Ξ ► ★ Ξ ►

Layout of Presentation

- 1. Theoretical
 - CWT with complex analysis function
 - CWT square modulus (scalogram)
 - Local Symmetric Properties
- 2. See some examples

< ∃ >

Square Modulus Phase Behavior

The Continuous Wavelet Transform

$$(W_{\Psi}f)(a,b) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \cdot \overline{\Psi\left(\frac{t-b}{a}\right)} dt$$

- Ψ is complex, compactly supported, and hermitian $(\overline{\Psi}(t) = \Psi(-t))$
- Ψ and f are at least twice continuous differentiable

.

SQUARE MODULUS Phase Behavior

The Square Modulus

We attempt to find an approximation to the square modulus. The square modulus of the CWT is defined as:

$$|(W_{\Psi}f)(a,b)|^2 = (W_{\Psi}f)(a,b)\overline{(W_{\Psi}f)(a,b)}$$

and

$$rac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b} = rac{\partial (W_{\Psi}f)(a,b)}{\partial b} \overline{(W_{\Psi}f)(a,b)}
onumber \ + (W_{\Psi}f)(a,b) rac{\partial \overline{(W_{\Psi}f)(a,b)}}{\partial b}$$

- 同 ト - 三 ト - 三 ト

SQUARE MODULUS Phase Behavior

A complex valued function $\Psi(x)$ can written as:

 $\Psi(x) = a(x) + ib(x)$

and

$$\frac{d}{dx} \left[\Psi(x)\overline{\Psi(x)} \right] = \frac{d}{dx} \left[(a(x) + ib(x)) \cdot (a(x) - ib(x)) \right]$$
$$= \frac{d}{dx} \left[a^2(x) + b^2(x) \right]$$
$$= 2(a(x)a'(x) + b(x)b'(x))$$
$$= 2 \cdot \operatorname{Re}(\Psi'(x) \cdot \overline{\Psi(x)})$$

ヘロト ヘポト ヘヨト ヘヨト

э

A complex valued function $\Psi(x)$ can written as:

 $\Psi(x) = a(x) + ib(x)$

and

$$\frac{d}{dx} \left[\Psi(x)\overline{\Psi(x)} \right] = \frac{d}{dx} \left[(a(x) + ib(x)) \cdot (a(x) - ib(x)) \right]$$
$$= \frac{d}{dx} \left[a^2(x) + b^2(x) \right]$$
$$= 2(a(x)a'(x) + b(x)b'(x))$$
$$= 2 \cdot \operatorname{Re}(\Psi'(x) \cdot \overline{\Psi(x)})$$

くロト (得) (ほ) (す)

э

The derivative of $(W_{\Psi}f)$ with respect to *b* is:

$$\frac{\partial (W_{\Psi}f)(a,b)}{\partial b} = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \cdot \frac{\partial \Psi\left(\frac{t-b}{a}\right)}{\partial b} dt$$
$$= \frac{1}{\sqrt{a^3}} \int_{-\infty}^{\infty} f(t) \cdot \overline{\Psi'\left(\frac{t-b}{a}\right)} dt$$

Using partial integration,

$$\frac{\partial (W_{\Psi}f)(a,b)}{\partial b} = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f'(t) \cdot \overline{\Psi\left(\frac{t-b}{a}\right)} dt$$

< ロ > < 同 > < 回 > < 回 > .

The derivative of $(W_{\Psi}f)$ with respect to *b* is:

$$\frac{\partial (W_{\Psi}f)(a,b)}{\partial b} = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \cdot \frac{\partial \Psi\left(\frac{t-b}{a}\right)}{\partial b} dt$$
$$= \frac{1}{\sqrt{a^3}} \int_{-\infty}^{\infty} f(t) \cdot \overline{\Psi'\left(\frac{t-b}{a}\right)} dt$$

Using partial integration,

$$\frac{\partial (W_{\Psi}f)(a,b)}{\partial b} = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f'(t) \cdot \overline{\Psi\left(\frac{t-b}{a}\right)} \, dt$$

< ロ > < 同 > < 回 > < 回 > .

01/14/ 01/ 10/0

SQUARE MODULUS Phase Behavior

Vorking out
$$\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b}$$
, we get
 $\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b} = 2\operatorname{Re}\left(\frac{\partial (W_{\Psi}f)(a,b)}{\partial b}\overline{(W_{\Psi}f)(a,b)}\right)$

and using $\frac{\partial (W_{\Psi}f)(a,b)}{\partial b}$ above,

V

$$\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b} = \frac{2}{a} \operatorname{Re} \int_{-\infty}^{\infty} f'(t) \cdot \overline{\Psi\left(\frac{t-b}{a}\right)} dt$$
$$\int_{-\infty}^{\infty} f(t) \cdot \Psi\left(\frac{t-b}{a}\right) dt$$

▲ロト ▲圖 と ▲ 国 と ▲ 国 と 二 国

Working out
$$\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b}$$
, we get
 $\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b} = 2\operatorname{Re}\left(\frac{\partial (W_{\Psi}f)(a,b)}{\partial b}\overline{(W_{\Psi}f)(a,b)}\right)$
and using $\frac{\partial (W_{\Psi}f)(a,b)}{\partial b}$ above,
 $\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b} = \frac{2}{a}\operatorname{Re}\int_{-\infty}^{\infty} f'(t) \cdot \overline{\Psi\left(\frac{t-b}{a}\right)} dt$
 $\int_{-\infty}^{\infty} f(t) \cdot \Psi\left(\frac{t-b}{a}\right) dt$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 のへで

SQUARE MODULUS Phase Behavior

For sufficiently smooth function U(t) and small *a* (fine-scale),

$$\int_{-\infty}^{\infty} U(t) \cdot \overline{\Psi\left(\frac{t-b}{a}\right)} dt = a \int_{-\infty}^{\infty} U(ax+b) \cdot \overline{\Psi(x)} dx$$
$$\approx a^2 U'(b) \int_{-\infty}^{\infty} x \cdot \overline{\Psi(x)} dx$$

くロト (得) (ほ) (ほ)

э

SQUARE MODULUS Phase Behavior

Applying the above approximation to
$$\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b}$$
,

$$\frac{\partial |(W_{\Psi}f)(a,b)|^2}{\partial b} \approx 2a^3 f'(b) \cdot f''(b) \cdot |m|^2$$

where

$$m=\int_{-\infty}^{\infty}x\cdot\overline{\Psi(x)}\,dx$$

ヘロト 人間 とくほとくほとう

æ

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples Conclusion References

Square Modulus Phase Behavior

Properties of approximation

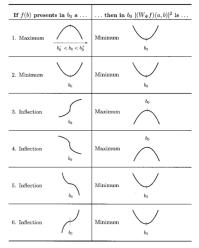


Fig. 3: Properties of CWT vs. local symmetry of f [2]

SQUARE MODULUS PHASE BEHAVIOR

Phase Behavior

By only considering the modulus of the CWT as above, the decomposed signal cannot in general be recovered. We would need the phase to reconstruct.

周 ト イ ヨ ト イ ヨ ト

Square Modulus Phase Behavior

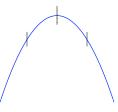
Locally Symmetric

Suppose *f* is continuous and satisfies the property below:

$$\exists b_0 \in \mathbb{R} \qquad \exists \epsilon > 0 \qquad \forall |h| < \epsilon$$

such that

$$f(b_0+h)=f(b_0-h)$$



$$b_0 - h b_0 b_0 + h$$

・ 戸 ト ・ ヨ ト ・ ヨ ト

For fine scale (small a)

$$(W_{\Psi}f)(a,b_0) = \sqrt{a} \int_{-\infty}^{\infty} f(at+b_0) \cdot \overline{\Psi(t)} dt$$
$$= \sqrt{a} \int_{0}^{\infty} (f(at+b_0) + f(-at+b_0)) \cdot \operatorname{Re}(\Psi(t)) dt$$
$$= 2\sqrt{a} \int_{0}^{\infty} f(at+b_0) \cdot \operatorname{Re}(\Psi(t)) dt$$

Then at a locally symmetric point of f, $(W_{\Psi}f)(a, b_0)$ is real and so the phase is 0 or π .

< ロ > < 同 > < 回 > < 回 > .

For fine scale (small a)

$$(W_{\Psi}f)(a,b_0) = \sqrt{a} \int_{-\infty}^{\infty} f(at+b_0) \cdot \overline{\Psi(t)} dt$$
$$= \sqrt{a} \int_{0}^{\infty} (f(at+b_0) + f(-at+b_0)) \cdot \operatorname{Re}(\Psi(t)) dt$$
$$= 2\sqrt{a} \int_{0}^{\infty} f(at+b_0) \cdot \operatorname{Re}(\Psi(t)) dt$$

Then at a locally symmetric point of f, $(W_{\Psi}f)(a, b_0)$ is real and so the phase is 0 or π .

- 同 ト - 三 ト - 三 ト

Introduction The Square Modulus and Phase Examples Conclusion References

SQUARE MODULUS Phase Behavior

Locally Anti-Symmetric

Suppose *f* is continuous and satisfies the property below:

$$\exists b_0 \in \mathbb{R}$$
 $\exists \epsilon > 0$ $\forall |h| < \epsilon$

such that

$$f(b_0 + h) + f(b_0 - h) = 2f(b_0)$$

$$b_0 - h b_0 b_0 + h$$

★ E ► ★ E ►

SQUARE MODULUS PHASE BEHAVIOR

In a similar approach to the locally symmetric case,

$$(W_{\Psi}f)(a,b_0) = \sqrt{a} \int_{-\infty}^{\infty} f(at+b_0) \cdot \overline{\Psi(t)} dt$$
$$= -2i\sqrt{a} \int_{0}^{\infty} f(at+b_0) \cdot \operatorname{Im}(\Psi(t)) dt$$

Then CWT of *f* around b_0 is purely imaginary and the phase is $\pm \frac{\pi}{2}$.

くロト (得) (ほ) (ほ)

SQUARE MODULUS PHASE BEHAVIOR

In a similar approach to the locally symmetric case,

$$(W_{\Psi}f)(a,b_0) = \sqrt{a} \int_{-\infty}^{\infty} f(at+b_0) \cdot \overline{\Psi(t)} dt$$
$$= -2i\sqrt{a} \int_{0}^{\infty} f(at+b_0) \cdot \operatorname{Im}(\Psi(t)) dt$$

Then CWT of *f* around b_0 is purely imaginary and the phase is $\pm \frac{\pi}{2}$.

- 同 ト - 三 ト - 三 ト

SQUARE MODULUS PHASE BEHAVIOR

General Continuously Differentiable Function

Suppose now *f* is *m* times continuously differentiable function $(m \ge 2)$

$$(W_{\Psi}f)(a,b_0)\approx \sqrt{a}\cdot \sum_{n=1}^m \frac{a^n}{n!}\overline{m_n}f^{(n)}(b_0)$$

where

$$m_n = \int_{-\infty}^{\infty} x^n \cdot \Psi(x) \, dx$$

・ 同 ト ・ ヨ ト ・ ヨ ト

SQUARE MODULUS PHASE BEHAVIOR

General Continuously Differentiable Function

Suppose now *f* is *m* times continuously differentiable function $(m \ge 2)$

$$(W_{\Psi}f)(a,b_0)\approx\sqrt{a}\cdot\sum_{n=1}^m\frac{a^n}{n!}\overline{m_n}f^{(n)}(b_0)$$

where

$$m_n = \int_{-\infty}^{\infty} x^n \cdot \Psi(x) \, dx$$

・ 同 ト ・ ヨ ト ・ ヨ ト

INTRODUCTION The Square Modulus and Phase Examples Conclusion References

SQUARE MODULUS PHASE BEHAVIOR

Using only two terms

$$(W_{\Psi}f)(a,b_0) \approx -\sqrt{a^3} \cdot f'(b_0) \operatorname{Im}(m_1) \cdot i - \frac{\sqrt{a^5}}{2} f''(b_0) \operatorname{Re}(m_2)$$

= $\alpha i + \beta$

Notice the phase when $f'(b_0) = 0$ or $f''(b_0) = 0$.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

э

SQUARE MODULUS PHASE BEHAVIOR

Using only two terms

$$(W_{\Psi}f)(a,b_0) pprox -\sqrt{a^3} \cdot f'(b_0) \operatorname{Im}(m_1) \cdot i - rac{\sqrt{a^5}}{2} f''(b_0) \operatorname{Re}(m_2)$$

= $lpha i + eta$

Notice the phase when $f'(b_0) = 0$ or $f''(b_0) = 0$.

< ロ > < 同 > < 回 > < 回 > .

э

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

Some Examples

Let's look at a few examples:

- 1. Symmetric Properties
- No Symmetric Properties
 ECG

GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

ヘロト ヘポト ヘヨト ヘヨト

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

Some Examples

Let's look at a few examples:

- 1. Symmetric Properties
- 2. No Symmetric Properties

3. ECG

< 🗇 🕨

★ E ► ★ E ►

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

Some Examples

Let's look at a few examples:

- 1. Symmetric Properties
- 2. No Symmetric Properties
- 3. ECG

< 🗇 🕨

★ E ► ★ E ►

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION REFERENCES ECG SIGNAL

Analyzing Wavelet

The mother wavelet for these examples:

$$\Psi(t) = g(t) \cdot e^{2i\pi k f_0 t}$$

where

$$g(t) = egin{cases} C \cdot (1 + \cos(2\pi f_0 t)) & ext{ for } |t| \leq rac{1}{2f_0} \ 0 & ext{ elsewhere } \end{cases}$$

ヘロト ヘポト ヘヨト ヘヨト

INTRODUCTION THE SQUARE MODULUS AND PHASE S Examples V Conclusion E References

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

Analyzing Wavelet

$$\Psi(t) = g(t) \cdot e^{2i\pi k f_0 t}$$

For this wavelet:

- ▶ *k* = 2
- f_0 is the normalize frequency $(0 < f_0 < \frac{1}{2})$
- ► Im(m₁) is positive
- Re(m₂) is negative

< ロ > < 同 > < 回 > < 回 > .

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples Conclusion References ECG Signal

Analyzing Wavelet

$$\Psi(t) = g(t) \cdot e^{2i\pi k f_0 t}$$

For this wavelet:

- ▶ *k* = 2
- f_0 is the normalize frequency $(0 < f_0 < \frac{1}{2})$

Im(m₁) is positive

Re(m₂) is negative

くロト (得) (ほ) (ほ)

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION REFERENCES

Analyzing Wavelet

$$\Psi(t) = g(t) \cdot e^{2i\pi k f_0 t}$$

For this wavelet:

- ▶ *k* = 2
- f_0 is the normalize frequency $(0 < f_0 < \frac{1}{2})$
- Im(m₁) is positive
- Re(m₂) is negative

くロト (得) (ほ) (ほ)

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples Conclusion References

Analyzing Wavelet

$$\Psi(t) = g(t) \cdot e^{2i\pi k f_0 t}$$

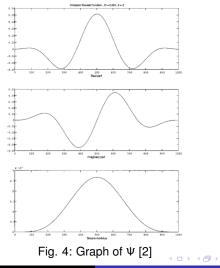
For this wavelet:

- ▶ *k* = 2
- f_0 is the normalize frequency $(0 < f_0 < \frac{1}{2})$
- ▶ Im(*m*₁) is positive
- Re(m₂) is negative

< ロ > < 同 > < 回 > < 回 > .

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

Analyzing Wavelet



GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

э

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION REFERENCES

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

1. Symmetrical Properties

For this example, $f_0 = 0.005$, and

$$a_i = rac{f_0}{f_0 + i \cdot \Delta}$$
 with $\Delta = 0.005, \, 0 \leq i \leq 10$

The input signal behaves like:

$$A_1 e^{-\frac{(t-m_1)^2}{b_1}} + A_2(t-m_2) e^{-\frac{(t-m_2)^2}{b_2}}$$

= 15 e^{-\frac{(t-250)^2}{1700}} + 0.3(t-625) e^{-\frac{(t-625)^2}{2500}}

< ロ > < 同 > < 回 > < 回 > < 回 > <

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION REFERENCES

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

1. Symmetrical Properties

For this example, $f_0 = 0.005$, and

$$a_i = rac{f_0}{f_0 + i \cdot \Delta}$$
 with $\Delta = 0.005, \, 0 \leq i \leq 10$

The input signal behaves like:

$$A_1 e^{-\frac{(t-m_1)^2}{b_1}} + A_2(t-m_2) e^{-\frac{(t-m_2)^2}{b_2}}$$

= 15 e^{-\frac{(t-250)^2}{1700}} + 0.3(t-625) e^{-\frac{(t-625)^2}{2500}}

▲ 伺 ▶ ▲ 国 ▶ ▲ 国 ▶

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples Conclusion

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPER ECG SIGNAL

1. Symmetrical Properties

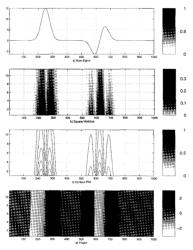


Fig. 5: Simulated data with symmetrical properties [2]

GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION REFERENCES

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

2. Without Symmetrical Properties

Define the following:

$$egin{aligned} f_0(t) &= rac{1 - \exp(-rac{(t-m_1)^2}{c})}{2 - \exp(-rac{(t-m_2)^2}{c})} \ &= rac{1 - \exp(-rac{(t-250)^2}{2500})}{2 - \exp(-rac{(t-300)^2}{2500})} \end{aligned}$$

くロト (得) (ほ) (ほ)

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples Conclusion References

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

2. Without Symmetrical Properties

The signal is defined by:

$f(t) = 10000 \cdot f_0(t) + 225 \cdot f_0'(-(t+10))$

In this case, the symmetry properties do not hold. But not all is lost...

 $\alpha i + \beta$

GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

イロト イポト イヨト イヨト

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

2. Without Symmetrical Properties

The signal is defined by:

$$f(t) = 10000 \cdot f_0(t) + 225 \cdot f'_0(-(t+10))$$

In this case, the symmetry properties do not hold. But not all is lost...

 $\alpha i + \beta$

GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

・ 同 ト ・ 三 ト ・ 三 ト

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples Conclusion

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

2. Without Symmetrical Properties

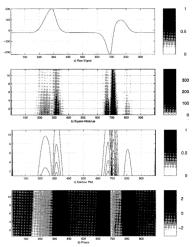


Fig. 6: Simulated data without symmetrical properties [2]

GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION REFERENCES SCIENCE CONCLUSION REFERENCES

3. ECG Signal

The signal is a normal ECG sampled at 360 Hz with $f_0 = 0.001$, and

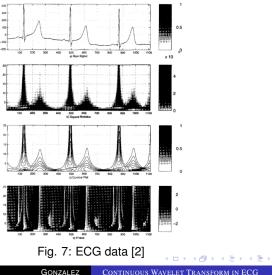
$$a_i = rac{f_0}{f_0 + i \cdot \Delta}$$
 with $\Delta = 0.002, \, 0 \leq i \leq 25$

ヘロト ヘポト ヘヨト ヘヨト

EXAMPLES

ECG SIGNAL

3. ECG Signal



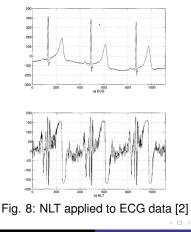
CONTINUOUS WAVELET TRANSFORM IN ECG

ъ

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION REFERENCES ECG SIGNAL

3. ECG Signal

Notice that the P wave was not clearly separated from the QRS waves. One solution is a nonlinear transformation (NFT)

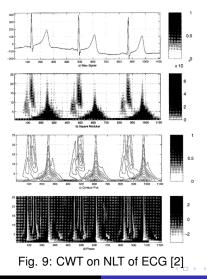


GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

-∢ ≣ ▶

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

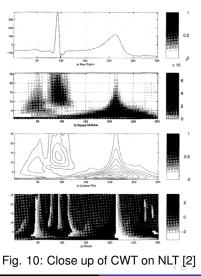
3. ECG Signal



GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

SYMMETRICAL PROPERTIES WITHOUT SYMMETRICAL PROPERTIES ECG SIGNAL

3. ECG Signal



GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples **Conclusion** References

Conclusion

What was presented:

- Some theoretical properties of CWT
- Some examples including ECG
- The importance of phase

The above can be exploited for recognition signal processing via Markov Models.

4 E b

INTRODUCTION THE SQUARE MODULUS AND PHASE Examples **Conclusion** References

Conclusion

What was presented:

- Some theoretical properties of CWT
- Some examples including ECG
- The importance of phase

The above can be exploited for recognition signal processing via Markov Models.

THE END

GONZALEZ CONTINUOUS WAVELET TRANSFORM IN ECG

・ロト ・聞 ト ・ ヨト ・ ヨト

æ –

INTRODUCTION THE SQUARE MODULUS AND PHASE EXAMPLES CONCLUSION **REFERENCES**

Wikipedia: Ecg, 2001.

Guy Garrualt Lofti Senhadjii, Laurent Thoraval. Continuous wavelet transform: Ecg recognition based on phase and modulus representations. *University of Rennes, France.*

(七日)) (日日)