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Abstract. This paper is a report on the methods and findings of two image classification algo-
rithms. Specifically, given a training set of 160 grayscale images of cat and dog faces the authors

explore two standard classification methods to correctly identify 38 unclassified cat and dog im-

ages. The first method discussed uses Linear Discriminant Analysis (LDA) to separate the two
types of images from each other. The second method extracts and measures the novel details of

each test image relative to the training set. Furthermore, to increase the rate of accuracy the

images are preprocessed using a filter mask that highlights the basic shape of the image subject.
Results demonstrate that the second method performs better, resulting in a 94% classification

rate.

1. Introduction

As children, we learn how to identify different kinds of animals. Our brain stores and sorts out
information we receive from various sources (i.e. parents, television, books, etc.) about the dis-
tinctive features belonging to such creatures. So when we look at different animals, we are able to
tell the difference between say, a cat and a dog. That means there must be some uniquely inherent
features possessed in each animal.

Our goal is to create a classification algorithm that trains the computer to extract these distinc-
tive features and correctly classify animals, namely cats and dogs. There are various features to
create our classifier around, such as shape of the faces, fur details, the angles created from the faces,
etc. After serious consideration, we chose to ignore the minute details and focused our attention
to design a classifier that uses the shape of the animal faces to distinguish one from another. In
general, cats tend to have rigid pointy ears and round faces while dogs tend to have droopy ears
and elongated facial structures.

Given a set of 160 grayscale images (80 cats and 80 dogs) we use the methods of Linear Dis-
criminant Analysis (LDA) and Kohonen’s Novelty Filter to train the classifier. Finally, we test
the accuracy of our algorithms against a set of 38 images (19 cats and 19 dogs) not found in the
training set.
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2. Theoretical Background

2.1. Principle Component Analysis. Prior to performing the classification algorithms, we trans-
form each 64× 64 grayscale image into a 4096× 1 column vector by concatenating the columns in
the image array. As a result, the dimension of the data matrices become quite large. To handle
data sets of such size we employ the well-researched theory of Singular Value Decomposition.

Recall that for any real-valued matrix Am×n there exists two orthogonal matrices Um×m, Vn×n
and a diagonal matrix Σm×n with diagonal entries σ1 ≥ σ2 ≥ . . . ≥ σn ≥ 0 such that

A = UΣV T

The column vectors in U form a basis for the space in which A resides. The diagonal entries of
Σ are called the singular values, and their values can be used to rank the vectors in U by level of
importance when representing the information in A.

Principle Component Analysis (PCA) takes advantage of this observation by simply excluding
“non-important” basis vectors, leaving behind what we call the principle components. Now, the
typical way of selecting the principle components is by calculating the cumulative energy of the
singular values using the formula

d∑
i=1

σ2
i

r∑
i=1

σ2
i

where r = rank(A) and d is the first number of singular values that yields a cumulative energy
higher than 97%. Therefore, we take the first d column vectors of U as the approximated basis for
the matrix A. We then have the approximated matrix A(d) given by

A
(d)
m×n = Um×dΣd×dV

T
d×n

Choosing the principle components formally reduces the dimension of the data matrix while still
retaining the most important information. Therefore, PCA makes for a great process to simplify
data sets prior to performing intense calculations.

2.2. Filter Mask. Since we are mainly interested in the overall shape of the dog or cat, we need
a way to erase minute details and separate the subject from the background. The filter mask is a
preprocessing step we use to simplify the image data. It works by replacing each pixel’s intensity
with a zero or a one. We choose how to reassign each pixel intensity by comparing it to the median
intensity of the entire image. The procedure is explained in section 3.2. Below is an example image
that has been transformed using the filter mask.
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(a) Original Image (b) Filter Mask Image

Figure 1

We found that this process works best on pictures that have a homogeneous (smooth) back-
ground and whose subjects occupy most of the image.

2.3. Linear Discriminant Analysis. The general theory behind Linear Discriminant Analysis
(LDA) is quite involved, and a well-written text on the construction of the method is found in [1].
In any case, we will examine the process here.

Consider two data sets, D1 and D2, with number of data points n1 and n2 respectively. The
objective of LDA is to find an optimal direction w such that the projections of the data points are
grouped with their peers and are separated from strangers. Figure 2 below illustrates this idea with
three different data sets.

Figure 2. An example of poorly-chosen projection line and an optimal projection line

As you can see, we want data points from the same class to be close together and data points
from different classes to be far apart. We now put these ideas into mathematical terms.

Define the class-wise means

m1 =
1

n1

∑
x∈D1

x and m2 =
1

n2

∑
y∈D2

y
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Then the means of the projected data are given by m̂1 = wTm1 and m̂2 = wTm2. Since we want
to maximize the distance between the different data sets we write

N(w) = max
w

(m̂2 − m̂1)2

This expression can also be written as

N(w) = wTSBw

where SB = (m2 −m1)(m2 −m1)T is called the between-class scatter matrix. Furthermore, we
want to minimize the variance of the projected data for each class. We describe this by the scalar
value

D(w) = min
w

∑
i=1,2

∑
x∈Di

(wTx− m̂i)
2

Again, this expression can be written as

D(w) = wTSWw

where SW =
∑

i=1,2

∑
x∈Di

(x −mi)(x −mi)
T is called the within-class scatter matrix. Putting these

together as a ratio we get what is called the generalized Rayleigh quotient:

J(w) =
N(w)

D(w)
=

wTSBw

wTSWw

Now, it can be shown that the maximum w that satisfies J(w) is found by solving the generalized
eigenvalue problem

SBw = λSWw

Therefore, we have a way to find the optimal direction that separates the two data sets!

2.4. Novelty Filter. The novelty filter algorithm relies primarily on the theory of orthogonal pro-
jection matrices. By definition, a matrix P is called an orthogonal projection matrix if the subspaces
R(P ) and R(I −P ) are orthogonal. The matrix I −P here is called the complementary projection
matrix. Furthermore, it can be shown that any matrix of the form P = MMT is a projection
matrix.

Orthogonal projection matrices are important to us because they can decompose a space W into
orthogonal subspaces. Therefore, any vector in that space can be uniquely written as a sum of
vectors from each orthogonal subspace. Formally, if x ∈ W and W = R(P ) ⊕̇R(I − P ), then x
can be written as

x = u + v

where u ∈ R(P ) and v ∈ R(I − P ). The novelty filter uses this idea to separate familiar patterns
in test data from new, or novel, patterns. In particular, the familiar patterns will live in R(P )
while the novel patterns will reside in R(I − P ).
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3. Algorithm Implementation and Development

3.1. Principle Component Analysis. The method for PCA we used is similar to the version
discussed in class. We made, however, one change in the process: We do not mean subtract
the data. The reason is largely due to the high variability of the dog data. That is, we found
that the dogs were so different in appearance that the ensemble average would take away critical
information from each image. Figure 3 shows the ensemble average images of the training data.
Observe that the cat ensemble average almost looks like it could be a training image!

(a) Average Ensemble of Dogs (b) Average Ensemble of Cats

Figure 3

The procedure for PCA is given below, and the MATLAB code can be found in section 6.4:

1. Construct the optimal basis using Singular Value Decomposition
2. Find the best d approximation of the basis using the cumulative energy procedure.

3.2. Filter Mask. The filter mask algorithm is very simple. Again, its purpose is to transform the
intensity of each pixel in the image to either a zero or a one. The general procedure is described
below, and the MATLAB code can be found in section 6.5:

Let D = {d(1)| . . . |d(n)} be a data matrix of dimension m× n.
For each d(k), k = 1, . . . , n

Calculate the median of d(k)

for j = 1, . . . ,m

if d
(k)
j < median, set d

(k)
j = 0

if d
(k)
j ≥ median, set d

(k)
j = 1

end

end

3.3. Linear Discriminant Analysis. LDA attempts to find a projection vector w that groups
like data and separates dissimilar data in an optimal way. The general algorithm is given below,
and the MATLAB code can be found in section 6.6
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Given two sets of data, D1 and D2, with number of data points n1 and n2 respectively, do the
following:

1. Define the class-wise means

m1 =
1

n1

∑
x∈D1

x and m2 =
1

n2

∑
y∈D2

y

2. Construct the between-class scatter matrix

SB = (m2 −m1)(m2 −m1)T

3. Construct the within-class scatter matrix

SW =

2∑
i=1

∑
x∈Di

(x−mi)(x−mi)
T

4. Solve the generalized eigenvalue problem given by

SBw = λSWw

where w is the generalized eigenvector corresponding to the largest generalized eigenvalue
λ. We take w to be the optimal projection vector.

Next, we describe the classification process that uses the optimal projection vector w. First, we
project the data sets, D1 and D2, onto a number line spanned by w. Second, we use the average of
the projected class-wise means, m̂1 and m̂2, to establish a boundary value on the number line that
separates the domains of each set. This average is given by

m̂1 + m̂2

2

Third, and finally, we project each test image onto the number line and determine which domain
it resides in relative to the boundary value. The MATLAB code can be found in section 6.7.

3.4. Novelty Filter. The novelty filter classification method requires only a few steps. We have
outlined the procedure below, and the MATLAB code can be found in section 6.8.
Given two sets of training data, D1 and D2, and a testing set X, do the following:

1. Construct an orthonormal basis for each training set using PCA. Denote them U1 and U2.
2. Calculate the complementary orthogonal projection matrix given by

Pi = I − UiU
T
i i = 1, 2

3. For each element x(k) ∈ X
Calculate the projection vi = Pix

(k), for i=1,2
if norm(v1) < norm(v2)

Classify x(k) as a member of D1.
else

Classify x(k) as a member of D2.
end

end
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4. Computational Results

After running the classification methods, our results were fairly good. The optimal vector and
the boundary value (indicated by �) that LDA obtained clearly separates the training set (indicated
by ∗), shown in Figure 4. The red marks represent the “dog ” data and the blue marks represent
the “cat ” data. Figure 4 also shows how the test set (indicated by ©) were classified.

Figure 4. Classification Results Using LDA

The confusion matrix in Figure 5 shows the numerical results of the LDA classification. Dogs
were correctly identified more than the cats. As you can see, 16 dogs were correctly classified as
dogs, but 3 dogs were considered cats. On the other hand, 15 cats were correctly classified, and 4
cats were mistaken for dogs. In summary, 31 out of 38 images were correctly classified, yielding a
81.58% accuracy for the LDA method.

Figure 5. Confusion Matrix Using LDA

Figure 6 shows the images of the cats and dogs that were misclassified using the LDA algorithm.
Image 19 has a lot of noise in the background, so that might be the reason why the LDA classifier
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wasn’t able to correctly classify that particular image.

Figure 6. Misclassified Images Using LDA

The novelty filter algorithm performed much better than LDA. In Figure 7, the confusion matrix
shows that all the cats were correctly classified, and only 2 dogs were mistaken for cats. A total of 36
out of 38 images were correctly classified, yielding a 94.74% accuracy for the Novelty Filter method.

Figure 7. Confusion Matrix Using Novelty Filter

Figure 8 shows the two images of the dogs that were misclassified. Both images of the dogs had
pointy ears, which could have caused the misclassification. Upon closer examination, we found that
cat eyes were found to be in the center of the image, while dog eyes tended to be in the upper half
of the picture. Notice that the two misclassified dogs have their eyes in the center of the image.
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Figure 8. Misclassified Images Using Novelty Filter

5. Summary

In summary, creating a classifier to identify images of cats and dogs can be done with good
accuracy. It seems that the simpler algorithm (i.e. Novelty Filter) performs better than the more
complex algorithm (LDA). Using less information seems to give better results, whereas obtaining
more information seems to “confuse” the algorithm. Applying the filter mask to set the image
pixels to “zeros” or “ones” made the images simple and the shape more discernible. This was a
very simple transformation of the image, yet resulted in high classification rates.

Even though the Novelty Filter gave our highest accuracy, there could be some modifications
done to improve the classification even further. One idea is to use the filter mask after applying
the median filter or the average filter to “smooth out” the images. This could potentially reduce
the background noise and make the facial features more distinctive, possibly giving higher rates.
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6. MATLAB Code

6.1. Main Script.

% Final Project Main Script

% by John Hammer, Tuyen Ly

% Math 521, Spring 2012

clear all;

%--- Get Raw Training Data and Raw Testing Data ---%

M = 160;

N = 38;

Train_Raw = mkData(’TIFFTraining’, M);

Test_Raw = mkData(’TIFFTesting’, N);

True = [ones(N/2,1); zeros(N/2,1)]; % Correct Classification Sequence

%--- Run Filter Mask on Training and Test Data ---%

Train_Bin = binaryData(Train_Raw, M);

Test_Bin = binaryData(Test_Raw, N);

%--- Run Classification Algorithms on Filtered Data ---%

Result = Hammer_Ly_Final_LDA(Train_Bin, Test_Bin, M, N);

mkResults(Test_Bin, True, Result, N);

Result = Hammer_Ly_Final_PCA(Train_Bin, Test_Bin, M, N);

mkResults(Test_Bin, True, Result, N);

6.2. Function mkData.

% mkData.m

% by John Hammer, Tuyen Ly

% Math 521, Spring 2012

function Data = mkData(directory,N)

% directory is the path where the images are stored

% N is the number of images to convert to column vectors

% Data is the data matrix containing the column vectors

Data = zeros(64*64,N);

cd(directory);

Names = dir(’*.tif’);

for k = 1:N

Img = double(imread(Names(k).name));

Data(:,k) = reshape(Img,64*64,1);

end

cd(’..’);

end
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6.3. Function mkResults.

% mkResults.m

% by John Hammer, Tuyen Ly

% Math 521, Spring 2012

function mkResults(Test, True, Result, N)

% Test is the test image Set

% True holds the CORRECT classifications of test images

% Result is the METHOD classifications of test images

% Dog is zero, Cat is one

% N is the number of Test images

%

% Conf is a 2x2 confusion matrix given by

% [ Dogs as Dogs , Dogs as Cats ]

% [ Cats as Cats , Cats as Dogs ]

%--- Construct 2x2 Confusion Matrix ---%

Conf = zeros(2);

X = True - Result;

for k = 1:N

if X(k) == -1

Conf(1,2) = Conf(1,2) + 1; % Dog as Cat

elseif X(k) == 1

Conf(2,2) = Conf(2,2) + 1; % Cat as Dog

else

if True(k) == 0

Conf(1,1) = Conf(1,1) + 1; % Dog as Dog

else

Conf(2,1) = Conf(2,1) + 1; % Cat as Cat

end

end

end

disp(’Results are’);

disp(Conf);

%--- Display incorrectly classified images ---%

i = 0;

figure()

nWrong = sum(Conf(:,2));

for k = 1:N

if X(k) ~= 0

i = i+1;

subplot(ceil(sqrt(nWrong)),ceil(sqrt(nWrong)),i);

imagesc(reshape(Test(:,k),64,64)); colormap(gray); axis off;
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str = sprintf(’Image %d’,k); title(str);

end

end

end % end function

6.4. Function PCA.

% PCA.m

% by John Hammer, Tuyen Ly

% Math 521, Spring 2012

function [D,KL,A] = PCA(X, TOL)

% X is the Data Ensemble

% TOL is the tolerance

% D is the reduced dimension

% KL is the KL basis

% A contains the coordinates of each data point in X relative to KL basis

%--- Perform SVD ---%

[KL,S,V] = svd(X,’econ’);

%--- Cumulative Energy Procedure ---%

ds = diag(S).^2;

dsum = sum(ds);

ksum = 0;

for k = 1:length(ds)

ksum = ksum + ds(k);

if (ksum/dsum) > TOL

D = k; % Best D Approx for KL basis

break;

end

end

KL = KL(:,1:D); % KL basis

A = S(1:D,1:D)*V(:,1:D)’; % Expansion coefs

end
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6.5. Function Filter Mask.

% binaryData.m

% by John Hammer, Tuyen Ly

% Math 521, Spring 2012

function [Data] = binaryData(Data, N)

% Apply Filter Mask to the Data set

for k = 1:N

mv = median(Data(:,k)); % The medain value in Data(:,k)

for j = 1:64*64 % Change each value to either zero or one

if Data(j,k) < mv

Data(j,k) = 0;

else

Data(j,k) = 1;

end

end

end

end % end function
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6.6. Function LDA.

function [W] = LDA(D1,D2,M)

% D1 is the first Data Set

% D2 is the second Data Set

% M is the row dimension for both classes

% W is the Optimal Projection Vector

%--- Find number of data points in each set ---%

n1 = size(D1,2);

n2 = size(D2,2);

%--- Define class-wise means ---%

m1 = sum(D1,2)/n1;

m2 = sum(D2,2)/n2;

%--- Define between-class scatter matrix ---%

v = m2-m1;

Sb = v*v’;

%--- Define within-class scatter matrix ---%

Sw = zeros(M,M);

for i = 1:n1

v = D1(:,i) - m1;

Sw = Sw + v*v’;

end

for i = 1:n2

v = D2(:,i) - m2;

Sw = Sw + v*v’;

end

%--- Solve generalized eigenvalue problem Sb*W=L*Sw*W ---%

[V,D] = eig(Sb,Sw);

%--- Find Eigenvector with Largest Eigenvalue ---%

evals = diag(D);

evmax = evals(1);

ind = 1; % Index of largest EV

for i=2:length(evals)

if evmax < evals(i)

evmax = evals(i);

ind = i;

end

end

W = V(:,ind)/norm(V(:,ind),2); % Optimal Projection vector

end
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6.7. LDA Classification Algorithm.

function [Result] = Hammer_Ly_Final_LDA(Train,Test,M,N)

% LINEAR DISCRIMINANT ANALYSIS

% Train is the set of Training data

% Test is the set of Testing data

% M is the number of images in Train

% N is the number of images in Test

% Result holds the classifications of test data

% dog is zero, cat is one

Result = zeros(N,1);

%--- Reduce Dimension of Training Data using PCA ---%

[d,KL,A] = PCA(Train, 0.97);

Cats = A(:,1:M/2);

Dogs = A(:,M/2+1:M);

%--- Reduce Dimension of Test Data ---%

Test = KL’*Test;

%--- Perform LDA and Project Data onto Real Line ---%

[W] = LDA(Cats,Dogs,d);

C = W’*Cats;

D = W’*Dogs;

%--- Find threshold value alpha ---%

Cmin = min(C);

Cmax = max(C);

Dmin = min(D);

Dmax = max(D);

Cpos = 0;

if Cmax < Dmax % Cats are left of alpha

alpha = (Cmax + Dmin)/2;

Cpos = 1;

span = [Cmin Dmax -0.5 0.5];

else

alpha = (Cmin + Dmax)/2;

span = [Dmin Cmax -0.5 0.5];

end

%--- Plot Projected Data ---%

figure();

plot(C,zeros(M/2,1),’b*’); hold on; % Plot Cat Data Set in Blue

plot(D,zeros(M/2,1),’r*’); % Plot Dog Data Set in Red

plot(alpha,0,’gs’); % Plot threshold value
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%--- Classify and Plot Test Animals ---%

for k = 1:N

P = W’*Test(:,k);

if Cpos

if P < alpha

Result(k) = 1;

end

else

if P > alpha

Result(k) = 1;

end

end

if k <= N/2

plot(P,0.25,’bo’);

else

plot(P,0.25,’ro’);

end

end

hold off; axis(span);

end % end function
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6.8. Novelty Filter Classification Algorithm.

% Novelty Filter Classification Algorithm

function [Result] = Hammer_Ly_Final_PCA(Train,Test,M,N)

% Train is the set of Training Data

% Test is the set of Testing Data

% M is the number of entries in Train

% N is the number of entries in Test

% Result is a vector of the Test classification

% dog is zero, cat is one

Result = zeros(N,1);

Set0 = Train(:,M/2+1:M); % Dogs

Set1 = Train(:,1:M/2); % Cats

%--- Construct Optimal (Orthogonal) Bases ---%

[d0,KL0,A0] = PCA(Set0, 0.97); % Dogs

[d1,KL1,A1] = PCA(Set1, 0.97); % Cats

%--- Calculate Novelty of Test Data Relative to each Basis ---%

for k = 1:N

x0 = KL0’*Test(:,k);

x1 = KL1’*Test(:,k);

% Calculate Norms

n0 = norm(KL0*x0 - Test(:,k),2);

n1 = norm(KL1*x1 - Test(:,k),2);

if n1 < n0

Result(k) = 1;

end

end

end % end function
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