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Principal Component Analysis
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What is PCA?

Principal component analysis (PCA) is a mathematical
procedure that uses an orthogonal transformation to convert a
set of observations of possibly correlated variables into a set
of values of linearly uncorrelated variables called principal
components.

The number of principal components is less than or equal to
the number of original variables.

This transformation is defined in such a way that the first
principal component has the largest possible variance (that is,
accounts for as much of the variability in the data as possible),
and each succeeding component in turn has the highest
variance possible under the constraint that it be orthogonal to
(i.e., uncorrelated with) the preceding components.

(http://en.wikipedia.org/wiki/Principal component analysis)
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Visual example of PCA

Early astronomers used a technique to simplify the motion of the
solar system This led to stunning insight into the laws of motion of
objects in space under gravitational forces. Of course, the
technique wasn’t called PCA then.
Beginning with a map of motion of planets how it looks from
Earth, we get a map of the solar system as it looks from the sun.

(http://adultera.awardspace.com/RECON/PCA1.html)
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Classification of Cats and Dogs Using PCA

The procedure:

Load ensemble of training images of cats and also of dogs.

Mean average both ensembles.

Call svd to get a training basis for cats and also for dogs.

Retain 95% of the cumulative energy in each ensemble.

Load ensemble of testing images of cats and also of dogs.

Mean average both testing ensembles.

For each test image:

Project test image onto training basis for cats and for dogs.
Take the two norm of both projections.
If the cat-basis norm is larger than the dog-basis norm then
classify the test image as a cat, else as a dog.

Compute success rates.
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Training Set Eigen-Pets

To keep the percentage of cumulative energy in each training set,
a little more than forty dimensions out of eighty were required for
each basis. Here are some of the eigen-cats and eigen-dogs.
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Training Set Eigen-Pets
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The Test-Pets

Here are the cats and dogs to be classified.
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The Result

Here is a table showing the results of the classifications.

Confusion matrix Cats Dogs

Classified as Cat 16 2
Classified as Dog 3 17

Total 19 19
Success Ratio 84.42% 89.47%


Overall results were good but there is room for improvement.
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The Misfits

Here are the cats and dogs that were classified incorrectly.

Perhaps the two dogs were mistaken for cats because they are two
of only four dogs that have perky ears while all the cats have perky
ears. As for why the three cats were taken to be dogs, it’s a
mystery.
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Learning Vector Quantization (LVQ)
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Preprocessed Steps

Applied filters (Laplacian filter or Median filter)

Principle Component Analysis (PCA)

Obtained numerical rank D of the matrix

D = 65 (median filter)
D = 131 (Laplacian filter)
D = 78 (raw data)
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Self Organizing Feature Map (SOFM)

Figures

The following are SOM using 25 neurons.

Figure: Self-organizing Map

SOFM Plot Animation

http://www.peltarion.com/doc/images/Animated_SOM_operation.gif
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Learning Vector Quantization (LVQ)

1 Unsupervising (first layer) and supervising (second layer)
learning

2 Competitive first layer (Self-Organizing Feature Map (SOFM))

a1 = compet(n1)

n1 = −


‖1wT − p‖
‖2wT − p‖

...
‖swT − p‖


3 Supervising learning for second layer

a2 = w2a1

w2
ki = 1 7−→subclass i is a part of class k
{p1, t1}, {p2, t2}, . . . , {pQ , tQ}
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Learning Vector Quantization (LVQ)

LVQ Network Learning with the Kohonen Rule

iw(q) =i w(q − 1) + α(p(q)−i w(q − 1)), if a2k = tk = 1

iw(q) =i w(q − 1)− α(p(q)−i w(q − 1)), if a2k 6= tk = 0

where i is the index of the weight,iw(q) is the new
weight,iw(q − 1) is the old weight, and α is a learning rate

Figures

Figure: Learning Vector Quantization
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Experiment/Simulation

Apply PCA to get the KL coefficient

Train and Test on raw data

Figures

Figure: Simulation Neural Network Training Block
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Experiment/Simulation

Result: 
Confusion matrix Cats Dogs

Classified as Cat 16 5
Classified as Dog 3 14

Total 19 19


Probability form Cats Dogs

Classified as Cat 84.21% 26.32%
Classified as Dog 15.79% 73.68%
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Experiment/Simulation

Figures

The following are misclassified images of cats and dogs.

Figure: Misclassified Images w/Raw Data
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Experiment/Simulation

Apply PCA to get the KL coefficient

Train and Test on ”median filtered” data


Confusion matrix Cats Dogs

Classified as Cat 17 3
Classified as Dog 2 16

Total 19 19


Probability form Cats Dogs

Classified as Cat 89.47% 15.19%
Classified as Dog 10.53% 84.21%
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Experiment/Simulation

Figures

The following are misclassified images of cats and dogs.

Figure: Misclassified Images w/Median Filtered Data
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Wavelet PCA Novelty (WPCAN) Filter
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Step 1: Wavelet transform

For each image, wavelet transform using 2 levels of discrete Haar
wavelets. And then vectorize using the wavelet coefficients (no
scaling coefficients).

⇒
[
V 1 H1 D1 V 2 H2 D2

]T
Note: We do not store C 2, the top left corner because C 2 mostly
contains only fur and background color.
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Step 2: Use PCA to get the reduced KL basis for each of
the classes.

1 Demean: X̃ = X −mean(X ).

2 Get the KL basis using svd: [U, , ] = svd(X̃ ).

3 Reduce the number of basis elements using the stretching
dimension Dδ and energy dimension Dγ with γ = 0.95 and
δ = 0.01: PC = UC (:, 1 : D), PD = UD(:, 1 : D).
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Step 3: Classify the samples using the novelty filter.

1 Demean the samples S with the means of the two classes:

SC = S −mean(C ),SD = S −mean(D)

2 Project the demeaned sample, using the reduced KL basis of
each of the classes and get the residue:

RC = SC − PCP
T
C SC ,RD = SD − PDP

T
D SD

3 If ‖RC‖2 < ‖RD‖2 then it is a cat and if ‖RC‖2 > ‖RD‖2 then
it is a dog.
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So what’s the result?

Withholding 10% of the data and using the other 90% to classify
them, we get on average:Confusion matrix Cats Dogs

Classified as Cat 97.3% 6.7%
Classified as Dog 2.7% 93.3%


This is done N = 10, 000 times to calculate the average. From the
secret 38 images,

Confusion matrix Cats Dogs

Classified as Cat 19 3
Classified as Dog 0 16

Total 19 19
Success Ratio 100% 84.21%
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So what’s the result?

(a) (b) (c)

Figure: The dog images that were misclassified as cats.

Notice the ears. In fact, the pointing of ears upward directly
matches exactly with misclassified.
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Analysis

Why does it work?

1 The novelty filter is best when the images have all the images
have the same foreground and background colors (i.e. binary
images).

2 PCA ”groups” pixels that correlate in intensity so given edges
of an object, the edge pixels are related.

3 Haar wavelets (with it’s weak compression of edges) gives you
a way to get the edges with multiple scales.



Principal Component Analysis Learning Vector Quantization Wavelet PCA Novelty Filter References

Analysis

Why does it work?

1 The novelty filter is best when the images have all the images
have the same foreground and background colors (i.e. binary
images).

2 PCA ”groups” pixels that correlate in intensity so given edges
of an object, the edge pixels are related.

3 Haar wavelets (with it’s weak compression of edges) gives you
a way to get the edges with multiple scales.



Principal Component Analysis Learning Vector Quantization Wavelet PCA Novelty Filter References

Analysis

Why does it work?

1 The novelty filter is best when the images have all the images
have the same foreground and background colors (i.e. binary
images).

2 PCA ”groups” pixels that correlate in intensity so given edges
of an object, the edge pixels are related.

3 Haar wavelets (with it’s weak compression of edges) gives you
a way to get the edges with multiple scales.



Principal Component Analysis Learning Vector Quantization Wavelet PCA Novelty Filter References

Analysis

But here’s something strange. This process is like this:

Notice that no one in either of the castles has ever seen both a cat
AND a dog and we task a person who’s never seen either creature
to judge whether it’s a cat or dog based on information from the
two castles.



Principal Component Analysis Learning Vector Quantization Wavelet PCA Novelty Filter References

Improvement

But it works so well! Still, we can give the person at the end an
extra duty to improve the quality. Instead of finding

min{‖RC‖, ‖RD‖},

we should scale them by how well or how poor each of the castles
did with the training sets:

min{t‖RC‖, (1− t)‖RD‖} for some t ∈ [0, 1]

That is, the person at the end chooses the best scaling t to
minimize the misclassification of the training data. This t is then
used during classification.
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Improvement

Solving for t,

We want t <
‖Ck − PDP

T
D Ck‖

‖Ck − PCP
T
C Ck‖+ ‖Ck − PDP

T
D Ck‖

=: tCk

meaning t small enough that as much cats from the training sets
{Ck} are identified as cats.

We want t >
‖Dk − PDP

T
DDk‖

‖Dk − PCP
T
C Dk‖+ ‖Dk − PDP

T
DDk‖

=: tDk

meaning t large enough that as much dogs from the training sets
{Dk} are identified as dogs.
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Improvement

So we want to minimize the number of misclassifications,

M(t) =
m∑

k=1

χ(−∞,tCk ](t) +
n∑

k=1

χ[tDk ,∞)(t).

This reduces to plugging values from the finite set

{tCk } ∪ {tDk } ∪ {
tCk +tDk

2 |1 ≤ i ≤ m, 1 ≤ j ≤ n} to find the
minimization M(t).
We note that without the improvement to find the best t, the
original version before is equivalent to when t = 1/2.
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Improvement...

So what is the result? ...It’s the same result as without the
improvement. That is, we have t = 1/2 for our simulated
classifications. And we currently do not have an explanation for
this. Confusion matrix Cats Dogs

Classified as Cat 97.3% 6.7%
Classified as Dog 2.7% 93.3%


This is anticlimactic but it’s interesting that somehow two castles
with no individual knowledge of the whole training sets can
produce good results and our attempt to mitigate that did nothing.
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Questions?
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