Cats And Dogs Challenge

Pattern Recognition and Geometric Data Analysis

Goal

- Classify Images of Cats and Dogs
- Method:
- Averaging and Laplacian Filters
- Principle Component Analysis
- Fisher Linear Discriminant Analysis

Averaging and Laplacian Filters

The Averaging Filter is used to make edges in an image smooth

$$
A F=\frac{1}{16}\left[\begin{array}{lll}
1 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 1
\end{array}\right]
$$

The Laplacian Filter is used for edge detection

$$
L F=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -8 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

PCA

Principle Component Analysis is used for Reduced
Dimensionality and Classification

Singular Value Decomposition

$$
X=U \Sigma V^{T}
$$

Fischer Linear Discriminant Analysis

LDA (FDA) is used to separate classes

Expansion Coefficients

$$
A=\Sigma V^{T}
$$

Results

Image of a Cat from the testing set

Image of the Cat after the Laplacian Filter has been used and color map has been changed

Result of Fischer Linear Discriminant Analysis. Projection onto an optimal vector, w.

Table of Confusion

The method gives a 97\% classification rate for our data.

Why objects may be misclassified

Misclassified canine

FIDO!!!

First eigenface of the cats

Classification by nearest neighbors

K-Nearest Neighbor Search

- For a new point y, find $d\left(x_{i}, y\right), x_{i} \in X$
- Take the K smallest values
- Find the 'mode'
- Note: K should be odd

KNN with an Adaptive Metric

- Define a new metric as
- $d_{\text {new }}\left(y, x_{i}\right)=\frac{d\left(y, x_{i}\right)}{r_{i}}$
- Where, $r_{i}=\min _{Y_{k} \neq Y_{i}} d\left(x_{k}, x_{i}\right)$, and Y_{k} and Y_{i} represent different classes
- This makes the smallest distance between a training point and another class 1.
- This is not a "true" metric, since $d(x, y) \neq d(y, x)$, but it works
- 2007 - Jigang Wang, Predrag Neskovic, Leon N. Cooper
- Brown University - Department of Physics, The Institute for Brain and Neural Systems

The metrics used with KNN

Euclidian $d(x, y)=(x-y)(x-y)^{\prime}$

Cosine $d(x, y)=1-\frac{x y^{\prime}}{\sqrt{x x^{\prime}} \sqrt{y y^{\prime}}}$

Correlation $d(X, Y)=1-\frac{(x-\bar{x})(y-\bar{y}) \prime}{\sqrt{(x-\bar{x})(x-\bar{x})^{\prime}} \sqrt{(y-\bar{y})(y-\bar{y})^{\prime}}}$

A look at the data

Adaptive KNN Results

- Best results:
- K=1, Euclidian metric
- Misclassified 2 dogs as cats
- $K=1$, Cosine and Correlation metric
- Misclassified 3 dogs as cats
- Observations:
- As K increased, misclassification increased

Adaptive KNN Results

Support Vector Machines

Overview

Linear Learning Machines

Kernel-Induced Feature Spaces

Unsupervised Learning

Master Yoda, I am confused about cats and dogs.

Embarrassing, much to learn we both have.

Supervised Learning

Master Yoda, I am confused about cats and dogs.

Much to learn you have, my young padawan. Explain it once more, I will.

Supervised Learning

In supervised learning, the learning machine is given a training set (inputs) with associated known labels (output values). Customarily, input values are in the form of vectors so that the input space is a subset of \mathbb{R}^{n}

Learning/Training means a decision rule can be found that explains the training set well. (Clearly, this part is easy since labels for the training set are known)

Rosenblatt's Perceptron

First iterative algorithm for learning linear classifications for the perceptron (binary classifier).

Takes in an initial weight $w_{0}=0$ and adapts at each time a training point is misclassified by current weights. The procedure is guaranteed to converge if there exists a hyperplane that correctly classifies the training data.

Definition. The functional margin of an example ($\mathbf{x}_{\mathbf{i}}, y_{i}$) with respect to a hyperplane (\mathbf{w}, b) is defined as $\gamma_{i}=y_{i}(\langle\mathbf{w} \cdot \mathbf{x}\rangle+b)$

Linear Classifier (Continued)

If $\gamma_{i}>0$, then the classification of $\left(\mathbf{x}_{\mathbf{i}}, y_{i}\right)$ is correct. If the margin is replaced by geometric margin, the distribution hyperplane (\mathbf{w}, b) is now a normalized linear function $\left(\frac{1}{\|w\|} \mathbf{w}, \frac{1}{\|w\|} b\right)$ measuring the Euclidean distances of the points from the decision boundary in the input space. This margin of the training set is now the maximal margin hyperplane. The margin is positive for a linearly separable set.

Support Vectors

Support Vectors are points nearest to the separating hyperplane.
They determine the position of the hyperplane, while all other points are independent and do not influence the hyperplane.

The weighted sum of these support vectors is the normal vector of the hyperplane.

The hyperplane γ, called H in the figure is defined as $\left\langle x_{i}, w\right\rangle+b \geq+1$ when $y_{i}=+1$ and $\left\langle x_{i}, w\right\rangle+b \leq-1$ when $y_{i}=-1$. The points that lie on the lines that satisfy the equalities are the support vectors. From previous slide, the distance between H_{1} and H_{2} is $2 /\|w\|$. So, in order to maximize margin, seek to minimize $\|w\|$ with the condition there are no data points between H_{1} and H_{2}. That is

Taking $\left\langle x_{i}, w\right\rangle+b \geq+1$ when $y_{i}=+1$
and $\left\langle x_{i}, w\right\rangle+b \leq-1$ when $y_{i}=-1$, combine to give $\left.y_{i}<x_{1}, w\right\rangle \geq 1$.
Thus, as previously stated γ needs to be positive in ouder for correct classification

Examples of minimizing tworangian, Quadratic Programming

Non-Linearly Separable Data

Learning in a Feature Space (higher dimensional space)

Let X be the input space. Then, the suitable representation for the data quantities referred to as features is chosen by a mapping $\phi: X \rightarrow F$. The space $F=\{\phi(\mathbf{x}): \mathbf{x} \in X\}$ is called the feature space.

If classification is easier in higher dimensions, we want to build a maximal hyperplane there. Its construction depends on inner products, which will be evaluated in the higher dimensions

Computationally, this can become, costly if the dimensions are high.
However, there exists a loophole. We use a kernel function that lives in low dimensions but behaves like an inner product in higher dimensions.

Kernel Functions

The Kernel is a function \mathcal{K}, such that for all $\mathbf{x}, \mathbf{y} \in X, \mathcal{K}(\mathbf{x}, \mathbf{y})=\langle\phi(\mathbf{x}), \phi(\mathbf{y})\rangle$, where ϕ maps from the input space X to the (inner product) feature space F.

Given a kernel function, the decision rule is now,

$$
f(\mathbf{x})=\sum_{i=0}^{\mathcal{L}} \alpha_{i} y_{i} \mathcal{K}\left(\mathbf{x}_{\mathbf{i}}, \mathbf{x}\right)+b
$$

for \mathcal{L} iterations of the Kernel

Thus, the maximal margin hyperplane is generated by the Kernel Function in the input space.

Kernel Examples

$$
\begin{array}{rr}
\text { linear } & \mathcal{K}(x, y)=<x, y> \\
\text { polynomial } & \mathcal{K}(x, y)=\left(\gamma<x, y>+c_{0}\right)^{d}
\end{array}
$$

radial basis function $\mathcal{K}(x, y)=\exp \left(-\gamma\|x-y\|^{2}\right)$
MATLAB Implementation Parameters
Principle Component Analysis
SVMTRAIN
Kernel rbf:
$\gamma=1$ and $\gamma=0.2$
box constraint C for for vector α
Four of twenty misclassification using PCA SMV RBF For 38 Testing Set, Cats classified as dogs, Five Dogs as Cats.

Kernel Function: rbf_kernel

Thirty Eight Testing Set - Three Cats classified as dogs, Five Dogs as Cats

Edge Detection with Wavelet

Wavelet

- A wavelet is an oscillation with an amplitude that starts out at zero, increases and then decreases back to zero.
- Many types of transforms:
- Continuous and Discrete
- Father and Mother (also have children)

Example of a continuous wavelet: Hat Wavelet

Continuous or Discrete

- When we perform a wavelet transform on an image, we use the 2D Discrete Wavelet.
$\mathrm{L}=$ low-pass
$\mathrm{H}=$ high-pass

Pyramidal Decomposition

Haar Wavelet

- What is the Haar Wavelet?
- A sequence of rescaled "square-shaped" functions which together form a basis

- Returning to Cat and Dog images:
- Used one iteration of the Haar Wavelet for edge detection on Cat and Dog images
- In order to recover the edges we use:
- Edges = HL + LH
- Results:

Classification with Voronoi Tessellation

Why so serious?
Georgy Voronoy

What is a tessellation?

- Tessellation is the process of creating a twodimensional plane using the repetition of a geometric shape with no overlaps and no gaps.
- NOTE: Generalizations to higher dimensions are also possible.
- What is a tessellation that occurs in nature?

Correct Answer: Honeycomb

-Why a tessellation?

- Well, Voronoi Tessellation in 2 -dimensions is a partitioning of a plane with n points into convex polygons such that each polygon contains exactly one generating point and every point in a given polygon is closer to its generating point than to any other.
- This idea can be expanded to n-dimensions

- We concatenate each image into column vectors.
- How can we represent each image as a point in 2-dimensions?

- After we take the SVD of the training set matrix, we use the two eigenvectors corresponding to the two highest eigenvalues.
- Retains majority of data
- Project each concatenated image onto the two eigenvectors

Classification Rate

Cat Classification: 17 out of 19
。 89.5 \%

- Dog Classification: 17 out of 19 -89.5\%

