Cats And Dogs Challenge

Pattern Recognition and Geometric Data Analysis




» Classify Images of Cats and Dogs

» Method:
» Averaging and Laplacian Filters
» Principle Component Analysis
» Fisher Linear Discriminant Analysis




Averaging and Laplacian Filters

Image after the Averaging Filter has been Applied
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The Averaging Filter is used
to make edges in an image
smooth
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The Laplacian Filter on the Smoothed Image

The Laplacian Filter is used for
edge detection
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Principle Component Analysis
is used for Reduced

Dimensionality and X = UEVT

Classification

Singular Value Decomposition




Fischer Linear Discriminant
Analysis
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LDA (FDA) is used to
separate classes Expansion Coefficients
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Results

Image of a Cat from the Image of the Cat after the

testing set Laplacian Filter has been used
and color map has been
changed
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Table of Confusion

Cats
Cats
Dogs

The method gives a 97%
classification rate for our data.

Dogs
19

18



Why objects may be misclassified

Misclassified canine

FIDO!!!
First eigenface of the cats




Classification by nearest neighbors

4




K-Nearest Neighbor Search

» For a new point vy, = A A
find d(x;,y), x;€ X T m
» Take the K smallest s
values .
» Find the ‘mode’ _

» Note: K should be
odd




KNN with an Adaptive Metric

» Define a new metric as

ay.x;)
* dpew(y, x;) = T r
- Where, r; = mf;}.d(xk'xi)’ and Y, and Y; represent different
classes e

» This makes the smallest distance between a training
point and another class 1.

» This is not a “true” metric, since d(x,y) # d(y,x), but it
works

» 2007 - Jigang Wang, Predrag Neskovic, Leon N.
Cooper

- Brown University - Department of Physics, The Institute for
Brain and Neural Systems



The metrics used with KNN

» Euclidian d(x,y) = (x — y)(x — y)’

xy!
Vax!\[yyr

» Cosined(x,y) =1 —

» Correlation d(X,Y) =1 — @O0V
Vx =) (x=32)1\| =) (="




A look at the data




Adaptive KNN Results

» Best results:
- K=1, Euclidian metric
- Misclassified 2 dogs as cats
- K=1, Cosine and Correlation metric
- Misclassified 3 dogs as cats

» Observations:
- As K increased, misclassification increased




Number misclassified

Adaptive KNN Results
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Support Vector Machines




Overview

Linear Learning Machines

Kernel-Induced Feature Spaces




Unsupervised Learning

Master Yoda, I am confused about cats and dogs.

Embarrassing, much to learn we both have.




Supervised Learning

Master Yoda, I am confused about cats and dogs.

Much to learn you have, my young padawan. Explain it once more, I will.




Supervised Learning

In supervised learning, the learning machine is given a training set (inputs)
with associated known labels (output values). Customarily, input values are in
the form of vectors so that the input space is a subset of R”

Learning/ Training means a decision rule can be found that explains the

training set well. (Clearly, this part is easy since labels for the training set are
known)




Rosenblatt’s Perceptron

First iterative algorithm for learning linear classifications for the perceptron
(binary classifier).

Takes in an initial weight wy = 0 and adapts at each time a training point
is misclassified by current weights. The procedure is guaranteed to converge if
there exists a hyperplane that correctly classifies the training data.

Definition. The functional margin of an example (xj,;) with respect to
a hyperplane (w,b) is defined as v; = y;(< w - x > +b)




Linear Classifier (Continued)

If v; > 0, then the classification of (x;, ;) is correct. If the margin is replaced
by geometric margin, the distribution hyperplane (w,b) is now a normalized
linear function (ﬁw, ﬁb) measuring the Euclidean distances of the points
from the decision boundary in the input space. This margin of the training set
is now the mazximal margin hyperplane. The margin is positive for a linearly

separable set.
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Support Vectors

Support Vectors are points nearest to the separating hyperplane.

They determine the position of the hyperplane, while all other points are
independent and do not influence the hyperplane.

The weighted sum of these support vectors is the normal vector of the hy-
perplane.

The hyperplane v, called H in the figure is defined as < z;,w > +b> + 1
when y; = +1 and < z;,w > +b< — 1 when y; = —1.
The points that lie on the lines that satisfy the equalities are the support vectors.
From previous slide, the distance between H; and Hs is 2/||w]||. So, in order to
maximize margin, seek to minimize ||w|| with the condition there are no data
points between H; and Hy. That is

Taking < z;,w > +b> 4+ 1 when y; = +1
and < z;,w > +b< — 1 when y; = —1,
combine to give y; < x1,w > >1.
as previously stated v needs to be

grangian, Quadratic Programming



Non-Linearly Separable Data
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Learning in a Feature Space (higher dimensional space)

Let X be the input space. Then, the suitable representation for the data
quantities referred to as features is chosen by a mapping ¢ : X —F'. The space
F ={¢(x) : x € X} is called the feature space.

If classification is easier in higher dimensions, we want to build a maximal
hyperplane there. Its construction depends on inner products, which will be
evaluated in the higher dimensions

Computationally, this can become, costly if the dimensions are high.
However, there exists a loophole. We use a kernel function that lives in low
dimensions but behaves like an inner product in higher dimensions.

Simiple in Higher Dimensional Space

® 0
Complex in Low Dimensional Space

yperplane




Kernel Functions

The Kernel is a function /IC, such that for all x,y € X, K(x,y) = (p(x), ¢(y)),
where ¢ maps from the input space X to the (inner product) feature space F.

Given a kernel function, the decision rule is now,
c

f(x) = Z ;Y K (x4,%) + b
i=0

for L iterations of the Kernel

Thus, the maximal margin hyperplane is generated by the Kernel Function
in the input space.




Kernel Examples

linear Klz,y) =<ax,y >
polynomial K(z,y) = (v < x,y > +00)d
radial basis function K(z,y) = exp(—~||z — y||?)

MATLAB Implementation Parameters

Principle Component Analysis

SVMTRAIN

Kernel rbf:
v=1and v=0.2
box constraint C for for vector a




Kernel Function: rbf_kernel
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Thirty Eight Testing Set - Three Cats classified as dogs, Five Dogs as Cats

Kernel Function: rbf_kernel
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Edge Detection with Wavelet




Wavelet

» A wavelet is an oscillation with an amplitude
that starts out at zero, increases and then
decreases back to zero.

» Many types of transforms:
- Continuous and Discrete
- Father and Mother (also have children)

Example of a continuous wavelet: /
Hat Wavelet b |




Continuous or Discrete

» When we perform a wavelet transform on an
image, we use the 2D Discrete Wavelet.

LL | H,

HL,

LH; | HH,

HL4

L = Jow-pass
H = high-pass L, HH,

LH; HH;




Pyramidal Decomposition




Haar Wavelet

» What is the Haar Wavelet?

- A sequence of rescaled “square-shaped” functions
which together form a basis

& Haar W Har
8 : : : 18 . :

[ 4 g
o o

0.5 =05 |

--'. e --l.

g o 0.5 1 T T o 0.5 ) 1.5




» Returning to Cat and Dog images:

- Used one iteration of the Haar Wavelet for edge
detection on Cat and Dog images

> In order to recover the edges we use:
- Edges = HL + LH

> Results:




Classification with Voronoi
Tessellation

Why so serious?
Georgy Voronoy

A\



What is a tessellation?

» Tessellation is the process of creating a two-
dimensional plane using the repetition of a
geometric shape with no overlaps and no
gaps.

- NOTE: Generalizations to higher dimensions are
also possible.

» What is a tessellation that occurs in nature?




Correct Answer: Honeycomb




» Why a tessellation?

» Well, Voronoi Tessellation in 2-dimensions is
a partitioning of a plane with n points into
convex polygons such that each polygon
contains exactly one generating point and
every point in a given polygon is closer to its
generating point than to any other.
> This idea can be expanded to n-dimensions




» We concatenate each image into column
vectors.

» How can we represent each image as a point
in 2-dimensions?




» After we take the SVD of the training set
matrix, we use the two eigenvectors
corresponding to the two highest
eigenvalues.

- Retains majority of data

> Project each concatenated image onto the two
eigenvectors




Projection onto the 2nd Eigenvector

-600

-650

-700

-740

-800

-850

-900

-950

-1000

-1050

‘Yoronoi Diagram of Training Set

T = ] |
3 €
B
& ¢ o
| v 1 | | 1 | |
200 150 100 50 0 50 100 160

Projection onto the 1st Eigenvector




Projection onto the 2nd Eigenvector
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‘oronoi Diagram with Added Data Point C
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Yoronoi - Training Set
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“oronoi - Adaptive Data
500

o
T

-500

T

-1000

T
1

-1500

-2000

-2500

T
1

T
|

-3000
B

3500 ' ' ' |
1500 -1000 500 0 500 1000 1500




Classification Rate

» Cat Classification: 17 out of 19
> 89.5 %

» Dog Classification: 17 out of 19
- 89.5%




