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Introduction

The goal of this project is to test various algorithms in order
to correctly identify images of cats and dogs.
We ran 4 methods through cross-validation in order to
maximize the percentage of correctly identified images.
And finally, run the final set of test images with each
algorithm.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Introduction

The goal of this project is to test various algorithms in order
to correctly identify images of cats and dogs.
We ran 4 methods through cross-validation in order to
maximize the percentage of correctly identified images.
And finally, run the final set of test images with each
algorithm.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Introduction

The goal of this project is to test various algorithms in order
to correctly identify images of cats and dogs.
We ran 4 methods through cross-validation in order to
maximize the percentage of correctly identified images.
And finally, run the final set of test images with each
algorithm.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

What is the process of image recognition?

Find a way to reduce the size of the image in order to
maximize efficiency.
Reconstruct an image using optimal bases so that the
most amount of information is captured.
Extract various information about the image.
Use various methods to compare images.
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The data

Figure : Images of cats and dogs
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Eigencat and Eigendog

Since eigenvectors are an important aspect of all our methods,
we feel it is important to explore the eigencat and eigendog.

Figure : The first 10 eigencats



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Eigencat and Eigendog

Figure : The first 10 eigendogs
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Wavelet Analysis

Wavelet analysis allows us to extract features from an
image in the form of “wavelets".
For images, we require a 2-D scaling function φ(x , y), and
three 2-D wavelets, ψH(x , y), ψV (x , y), and ψD(x , y).
These wavelets measure functional variations (intensity
variations for images) along different dimensions: ψH

measures along the columns, ψV measures along the
rows, and ψD measures along the diagonals [2].
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The equations

Define the scaled and translated basis functions as:

φj
m,n(x , y) = 2−j/2φ(2−jx −m,2−jy − n)

(ψj
m,n(x , y))i = 2−j/2ψ(2−jx −m,2−jy − n),

The discrete wavelet transform of an image f (x , y) of size
M × N is then:

c j
m,n =

1√
MN

M−1∑
x=0

N−1∑
y=0

f (x , y)φj
m,n(x , y)

(d j
m,n)i =

1√
MN

M−1∑
x=0

N−1∑
y=0

f (x , y)(ψj
m,n(x , y))i ,

where i = {H,V ,D}.
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Implementation

In order to implement wavelet analysis, we used MATLAB’s
“dwt2" function along with the ’Haar’ wavelets.
Since each iteration of DWT creates four images, each of
size M/2× N/2, we only need to do 2 or iterations.
At the 2nd iteration, we already have a 16× 16 image, and
any further decomposition of it yields very pixelated
images with very little information.
Since wavelet analysis is only a means to generate
wavelets (images in our case), analysis of the wavelets are
done with the following methods.
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Decomposition of a cat and dog

Figure : 2 level decomposition of a cat (left) and dog (right).
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Principal Angles - Introduction

A projection, in R2, is a transformation of a vector into a
different vectors direction.
Conceptually, in higher dimensions, this is the equivalent of
transforming a vector space into another vector space’s
direction.
The advantage of performing a projection is that it allows
for easier comparisons.
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Singular Value Decomposition

Singular Value Decomposition, or SVD, is decomposing a
matrix into 3 matrices, M = UΣV T .
U is a unitary matrix, U−1 = UT , of M ’s eigenvectors.
U is an orthonormal basis, which means it can be used as
a projection matrix.
Σ is a diagonal matrix, such that the values of the diagonal
are the eigenvalues of M.
V T is a unitary matrix of M ’s eigenvectors.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Singular Value Decomposition

Singular Value Decomposition, or SVD, is decomposing a
matrix into 3 matrices, M = UΣV T .
U is a unitary matrix, U−1 = UT , of M ’s eigenvectors.
U is an orthonormal basis, which means it can be used as
a projection matrix.
Σ is a diagonal matrix, such that the values of the diagonal
are the eigenvalues of M.
V T is a unitary matrix of M ’s eigenvectors.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Singular Value Decomposition

Singular Value Decomposition, or SVD, is decomposing a
matrix into 3 matrices, M = UΣV T .
U is a unitary matrix, U−1 = UT , of M ’s eigenvectors.
U is an orthonormal basis, which means it can be used as
a projection matrix.
Σ is a diagonal matrix, such that the values of the diagonal
are the eigenvalues of M.
V T is a unitary matrix of M ’s eigenvectors.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Singular Value Decomposition

Singular Value Decomposition, or SVD, is decomposing a
matrix into 3 matrices, M = UΣV T .
U is a unitary matrix, U−1 = UT , of M ’s eigenvectors.
U is an orthonormal basis, which means it can be used as
a projection matrix.
Σ is a diagonal matrix, such that the values of the diagonal
are the eigenvalues of M.
V T is a unitary matrix of M ’s eigenvectors.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Singular Value Decomposition

Singular Value Decomposition, or SVD, is decomposing a
matrix into 3 matrices, M = UΣV T .
U is a unitary matrix, U−1 = UT , of M ’s eigenvectors.
U is an orthonormal basis, which means it can be used as
a projection matrix.
Σ is a diagonal matrix, such that the values of the diagonal
are the eigenvalues of M.
V T is a unitary matrix of M ’s eigenvectors.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Principal Angles

In R2, you can use the angle between two vectors to
determine how similar they are.
cos(θ) = u·v

‖u‖‖v‖

As you go up in dimensions, you start to work with vector
spaces, which consists of a multiple vectors. To handle
this, you use principal Angles.
Principal angles is applying the cos(θ) formula for all
combinations of vectors among the two vector spaces.
The smaller the θ the more “similar".
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Putting it all together

M is the training sets, and N is the test set.
Perform SVD on the training data, M = UMΣMV T

M .
Project the test set onto the training set, UMN.
Compute principal angles between the training sets and
projected test set.
The training set is ΣMV T

M .
The projected test set is UMN.
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Kohonen’s Novelty Filter

Kohonen’s way to compare the two images and see the
difference.
The process is to pick the best characteristic from each of
the test sample by using Singular Value Decomposition.
The image that we want to test will be projected to the
Singular Value Decomposition and subtract from the
original, whichever give the smallest two norms (implies
smaller difference from the Singular Value Decomposition)
will be categorize to be the same class with the image.
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The equations

X = SC × SC′ × TT (:, i)− TT (:, i)
Y = SD × SD′ × TT (:, i)− TT (:, i) i = 1,2, ...K ,

If ‖X‖2 ≤ ‖Y‖2 the test consider it to be a cat and it is a dog
otherwise.
The reason why the filter pick SC or SD is because
SC ×SC′ = I, where I is the identity matrix. As a result after we
apply the filter, we should get the same (or close to the original
vector) if they are from the same type.
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KLDA - Introduction

KLDA generalizes LDA since in the transformed space, the
principal components are nonlinearly related to the input
variables.
Kernel Linear Discriminant Analysis (KLDA) maps the input
space into a high dimensional, nonlinear feature space.
This transformation is carried out by a kernel function
φ : X → F .
Common kernel function is the RBF (Gaussian):
φ(x,y) = exp

(
−‖x−y‖2

2σ2

)
where the assumption is that the

classes have a multivariate Gaussian distribution.
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KLDA - Intro. cont

Figure : Feature space transformation.
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Implementation

After mapping data to feature space, then same procedure
as LDA to find optimal direction that separates classes:

Rayleigh quotient: J(w) =
wT Sφ

B w
wT Sφ

W w
.

Solve generalized eigenvalue problem: Sφ
Bw = J(w)Sφ

W w.

Performed leave-one-out cross-validation (LOOCV) on
training set to find best parameter σ for kernel function and
energy for dimensionality reduction using principal
components analysis (PCA) ([1],[3],[4]).
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Method of testing

For each method we run it through cross-validation.
Furthermore, we used different sets of different numbers of
training images in order to find the “optimal" number of
training images in order to produce the best results.
Logically, it would seem that using all images as a training
set would be the best, but if we could produce the same
results with half as many, then the time it takes will be
reduced.
After all the data is collected, we average the results.
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Final results

Our testing data consists of 38 images, 19 cats and 19 dogs.
As stated before, we ran our algorithms with a varying number
(40,50,60,70) of training images.

For each case, we ran 11 iterations cycling through all the
images to make sure all images were included at least once in
our training set.

For the methods that require cumulative energy, we used 99%.
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Final Results

Method 40 50 60 70
Principal Angles .8684 .8421 .8684 .8684

Novelty Filter .9211 .9211 .9211 .8947
LDA .8158 .8421 .8421 .8421

Table : Best results from using original data.
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Final Results

Method 40 50 60 70
Principal Angles ..8947 .8947 .8947 .9211

Novelty Filter .9211 .9211 .9211 .9211
LDA .7632 .8158 .7632 .7632

Table : Best results from using first wavelet horizontal detail.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Final Results

Method 40 50 60 70
Principal Angles .9211 .9211 .8947 .8947

Novelty Filter .9474 .9211 .9211 .8947
LDA .7105 .6579 .6579 .7368

Table : Best results from using first wavelet vertical detail.



INTRODUCTION METHODS RESULTS CONCLUSION REFERENCES

Final Results

Method 40 50 60 70
Principal Angles .8421 .8684 .8684 .8684

Novelty Filter .9211 .9211 .9211 .8947
LDA .7105 .6842 .6579 .6053

Table : Best results from using second wavelet approximation.
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Final Results

Method 40 50 60 70
Principal Angles .8947 .8684 .8684 .8684

Novelty Filter .8947 .8947 .8947 .8947
LDA .7895 .8684 .8158 .7895

Table : Best results from using second wavelet horizontal detail.
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Final Results

Method 40 50 60 70
Principal Angles .8421 .8158 .8421 .8684

Novelty Filter .8421 .8158 .8421 .8158
LDA .5789 .6579 .6579 .7368

Table : Best results from using second wavelet vertical detail.
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Final Results

Data Set σ e Accuracy
Training 6.05 0.75 0.89375 (143/160)

Validation 5.45 0.75 0.92105 (35/38)

Table : KLDA classification performance.
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Final Results

Figure : Separation using KLDA
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Analysis of results

Kohonen’s Novelty Filter yielded the best overall
performance with a peak of .9474 using 40 training images
with the level 1 vertical detail wavelet.
The number of images in the training set does affect the
accuracy, but more importantly, which images are captured
in the training set are more important.
KLDA demonstrated best separation of classes over PCA
and KPCA, but did not project well.
MidRange (nonparametric) threshold classification
boundary performed better than (parametric) Mahalanobis
distance. This is an indicator that the data may not be
Normal.
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Future work

Although we only used 4 methods, there are a number of other
methods that could be used for this problem. Some of the other
methods we could try are:

Radial Basis Functions
Labeled Voronoi cell classification
Set-to-set comparison with principal angles and
Grassmannian distances
Fourier Analysis
Edge-based analysis
Comparing different kernel function(s).
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