▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

## Cats vs. Dogs

Raymond Ahn Daradipo Bou Augusto Partida Justin Sunu

CSU, Long Beach

May 10, 2012

|         | Methods<br>000000000000 | RESULTS | CONCLUSION | REFERENCES |
|---------|-------------------------|---------|------------|------------|
| Outline |                         |         |            |            |





#### Methods

- Wavelet Analysis
- Principal Angles
- Kohonen's Novelty Filter
- Kernel Linear Discriminant Analysis

# 3 Results

## 4 Conclusion

| INTRODUCTION | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|--------------|-------------------------|---------|------------|------------|
| Introduction |                         |         |            |            |

• The goal of this project is to test various algorithms in order to correctly identify images of cats and dogs.

- We ran 4 methods through cross-validation in order to maximize the percentage of correctly identified images.
- And finally, run the final set of test images with each algorithm.

| INTRODUCTION | Methods<br>000000000000 | RESULTS | CONCLUSION | REFERENCES |
|--------------|-------------------------|---------|------------|------------|
| Introduction |                         |         |            |            |

• The goal of this project is to test various algorithms in order to correctly identify images of cats and dogs.

- We ran 4 methods through cross-validation in order to maximize the percentage of correctly identified images.
- And finally, run the final set of test images with each algorithm.

| INTRODUCTION | Methods<br>000000000000 | RESULTS | CONCLUSION | REFERENCES |
|--------------|-------------------------|---------|------------|------------|
| Introduction |                         |         |            |            |

• The goal of this project is to test various algorithms in order to correctly identify images of cats and dogs.

- We ran 4 methods through cross-validation in order to maximize the percentage of correctly identified images.
- And finally, run the final set of test images with each algorithm.

| INTRODUCTION | Methods<br>000000000000 | RESULTS    | Conclusion | REFERENCES |
|--------------|-------------------------|------------|------------|------------|
| What is the  | process of ima          | age recogr | nition?    |            |

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Extract various information about the image.
- Use various methods to compare images.

| INTRODUCTION | Метнодs<br>000000000000 | RESULTS    | Conclusion | References |
|--------------|-------------------------|------------|------------|------------|
| What is the  | process of ima          | age recogr | nition?    |            |

# • Find a way to reduce the size of the image in order to maximize efficiency.

• Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

| What is the  | process of ima          | ade recoar | nition?    |            |
|--------------|-------------------------|------------|------------|------------|
| INTRODUCTION | Methods<br>000000000000 | RESULTS    | CONCLUSION | REFERENCES |

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

| 14/1 · · · · · | 00000000000   |          |           |  |
|----------------|---------------|----------|-----------|--|
| What is the    | process of im | age reco | ognition? |  |

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

| 14/1 · · · · · | 00000000000   |          |           |  |
|----------------|---------------|----------|-----------|--|
| What is the    | process of im | age reco | ognition? |  |

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

| INTRO |  |
|-------|--|
|       |  |

METHODS

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

References

## The data



Figure : Images of cats and dogs

INTRODUCTION

#### METHODS

RESULTS

CONCLUSION

REFERENCES

# **Eigencat and Eigendog**

Since eigenvectors are an important aspect of all our methods, we feel it is important to explore the eigencat and eigendog.

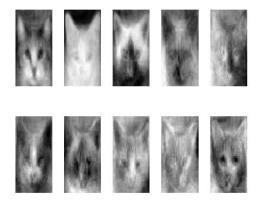


Figure : The first 10 eigencats

| INTRODUCTION |  |  |  |
|--------------|--|--|--|
|              |  |  |  |
|              |  |  |  |

Methods

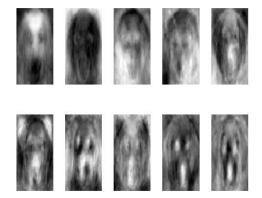
RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

# **Eigencat and Eigendog**



#### Figure : The first 10 eigendogs

|                  | Methods<br>••••• | RESULTS | CONCLUSION | References |
|------------------|------------------|---------|------------|------------|
| Wavelet Analysis |                  |         |            |            |

- Wavelet analysis allows us to extract features from an image in the form of "wavelets".
- For images, we require a 2-D scaling function φ(x, y), and three 2-D wavelets, ψ<sup>H</sup>(x, y), ψ<sup>V</sup>(x, y), and ψ<sup>D</sup>(x, y).
- These wavelets measure functional variations (intensity variations for images) along different dimensions:  $\psi^H$  measures along the columns,  $\psi^V$  measures along the rows, and  $\psi^D$  measures along the diagonals [2].

|           | Methods<br>•0000000000000 | RESULTS | CONCLUSION | References |
|-----------|---------------------------|---------|------------|------------|
| Wavelet / | Analysis                  |         |            |            |

- Wavelet analysis allows us to extract features from an image in the form of "wavelets".
- For images, we require a 2-D scaling function φ(x, y), and three 2-D wavelets, ψ<sup>H</sup>(x, y), ψ<sup>V</sup>(x, y), and ψ<sup>D</sup>(x, y).
- These wavelets measure functional variations (intensity variations for images) along different dimensions:  $\psi^H$  measures along the columns,  $\psi^V$  measures along the rows, and  $\psi^D$  measures along the diagonals [2].

|           | Methods<br>●000000000000 | RESULTS | CONCLUSION | References |
|-----------|--------------------------|---------|------------|------------|
| Wavelet A | Analysis                 |         |            |            |

- Wavelet analysis allows us to extract features from an image in the form of "wavelets".
- For images, we require a 2-D scaling function φ(x, y), and three 2-D wavelets, ψ<sup>H</sup>(x, y), ψ<sup>V</sup>(x, y), and ψ<sup>D</sup>(x, y).
- These wavelets measure functional variations (intensity variations for images) along different dimensions: ψ<sup>H</sup> measures along the columns, ψ<sup>V</sup> measures along the rows, and ψ<sup>D</sup> measures along the diagonals [2].

|              | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|--------------|-------------------------|---------|------------|------------|
| The equation | ons                     |         |            |            |

Define the scaled and translated basis functions as:

$$\begin{split} \phi^{j}_{m,n}(x,y) &= 2^{-j/2}\phi(2^{-j}x-m,2^{-j}y-n)\\ (\psi^{j}_{m,n}(x,y))^{i} &= 2^{-j/2}\psi(2^{-j}x-m,2^{-j}y-n), \end{split}$$

The discrete wavelet transform of an image f(x, y) of size  $M \times N$  is then:

$$c_{m,n}^{j} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \phi_{m,n}^{j}(x,y)$$
$$(d_{m,n}^{j})^{i} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) (\psi_{m,n}^{j}(x,y))^{i},$$

where  $i = \{H, V, D\}$ .

|          | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|----------|-------------------------|---------|------------|------------|
| The equa | tions                   |         |            |            |

Define the scaled and translated basis functions as:

$$\begin{split} \phi^{j}_{m,n}(x,y) &= 2^{-j/2}\phi(2^{-j}x-m,2^{-j}y-n)\\ (\psi^{j}_{m,n}(x,y))^{i} &= 2^{-j/2}\psi(2^{-j}x-m,2^{-j}y-n), \end{split}$$

The discrete wavelet transform of an image f(x, y) of size  $M \times N$  is then:

$$c_{m,n}^{j} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \phi_{m,n}^{j}(x, y)$$
$$(d_{m,n}^{j})^{i} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) (\psi_{m,n}^{j}(x, y))^{i},$$

where  $i = \{H, V, D\}$ .

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

|          | Methods<br>00000000000 | RESULTS | CONCLUSION | References |
|----------|------------------------|---------|------------|------------|
| Implemer | ntation                |         |            |            |

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2<sup>nd</sup> iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

|            | Methods<br>000000000000 | RESULTS | Conclusion | REFERENCES |
|------------|-------------------------|---------|------------|------------|
| Implementa | ation                   |         |            |            |

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2<sup>nd</sup> iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

|            | Methods<br>00000000000 | RESULTS | Conclusion | REFERENCES |
|------------|------------------------|---------|------------|------------|
| Implementa | ation                  |         |            |            |

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2<sup>nd</sup> iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

|            | Methods<br>00000000000 | RESULTS | Conclusion | REFERENCES |
|------------|------------------------|---------|------------|------------|
| Implementa | ation                  |         |            |            |

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2<sup>nd</sup> iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

INTRODUCTION

Methods

RESULTS

CONCLUSIO

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

### Decomposition of a cat and dog

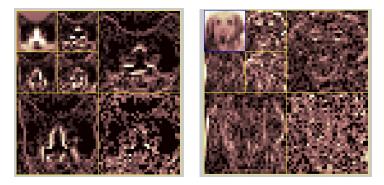


Figure : 2 level decomposition of a cat (left) and dog (right).

|           | Methods         | RESULTS | CONCLUSION | REFERENCES |
|-----------|-----------------|---------|------------|------------|
| Principal | Anales - Introd | uction  |            |            |

- A projection, in  $\mathbb{R}^2$ , is a transformation of a vector into a different vectors direction.
- Conceptually, in higher dimensions, this is the equivalent of transforming a vector space into another vector space's direction.
- The advantage of performing a projection is that it allows for easier comparisons.

・ロト・日本・日本・日本・日本

|           | Methods<br>0000 <b>000</b> 00000 | RESULTS | CONCLUSION | REFERENCES |
|-----------|----------------------------------|---------|------------|------------|
| Principal | Anales - Introd                  | uction  |            |            |

- A projection, in  $\mathbb{R}^2$ , is a transformation of a vector into a different vectors direction.
- Conceptually, in higher dimensions, this is the equivalent of transforming a vector space into another vector space's direction.
- The advantage of performing a projection is that it allows for easier comparisons.

|           | Methods<br>0000 <b>000</b> 00000 | RESULTS | CONCLUSION | REFERENCES |
|-----------|----------------------------------|---------|------------|------------|
| Principal | Anales - Introd                  | uction  |            |            |

- A projection, in  $\mathbb{R}^2$ , is a transformation of a vector into a different vectors direction.
- Conceptually, in higher dimensions, this is the equivalent of transforming a vector space into another vector space's direction.
- The advantage of performing a projection is that it allows for easier comparisons.

|            | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|------------|-------------------------|---------|------------|------------|
| Singular \ | alue Decompo            | osition |            |            |

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices,  $M = U\Sigma V^T$ .
- U is a unitary matrix,  $U^{-1} = U^T$ , of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- Σ is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

|            | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|------------|-------------------------|---------|------------|------------|
| Singular V | alue Decompo            | osition |            |            |

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices,  $M = U\Sigma V^T$ .
- U is a unitary matrix,  $U^{-1} = U^T$ , of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- $\Sigma$  is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

|            | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|------------|-------------------------|---------|------------|------------|
| Singular V | alue Decompo            | osition |            |            |

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices,  $M = U\Sigma V^T$ .
- U is a unitary matrix,  $U^{-1} = U^T$ , of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- $\Sigma$  is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

|            | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|------------|-------------------------|---------|------------|------------|
| Singular V | alue Decompo            | osition |            |            |

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices,  $M = U\Sigma V^T$ .
- U is a unitary matrix,  $U^{-1} = U^T$ , of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- $\Sigma$  is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

|            | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|------------|-------------------------|---------|------------|------------|
| Singular V | alue Decompo            | osition |            |            |

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices,  $M = U\Sigma V^T$ .
- *U* is a unitary matrix,  $U^{-1} = U^T$ , of *M*'s eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- $\Sigma$  is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

•  $V^{T}$  is a unitary matrix of *M*'s eigenvectors.

|           | Methods<br>0000000000000 | RESULTS | CONCLUSION | References |
|-----------|--------------------------|---------|------------|------------|
| Principal | Anales                   |         |            |            |

- In R<sup>2</sup>, you can use the angle between two vectors to determine how similar they are.
- $\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$
- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

|           | Methods | RESULTS | CONCLUSION | References |
|-----------|---------|---------|------------|------------|
| Principal | Angles  |         |            |            |

- In R<sup>2</sup>, you can use the angle between two vectors to determine how similar they are.
- $\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$
- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

|           | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|-----------|-------------------------|---------|------------|------------|
| Principal | Angles                  |         |            |            |

 In ℝ<sup>2</sup>, you can use the angle between two vectors to determine how similar they are.

• 
$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$$

- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

(日) (日) (日) (日) (日) (日) (日)

|           | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|-----------|-------------------------|---------|------------|------------|
| Principal | Angles                  |         |            |            |

 In ℝ<sup>2</sup>, you can use the angle between two vectors to determine how similar they are.

• 
$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$$

- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

(日) (日) (日) (日) (日) (日) (日)

|           | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|-----------|-------------------------|---------|------------|------------|
| Principal | Angles                  |         |            |            |

 In ℝ<sup>2</sup>, you can use the angle between two vectors to determine how similar they are.

• 
$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$$

- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

(日) (日) (日) (日) (日) (日) (日)

| INTRODUCTION | METHODS<br>000000000000 | RESULTS | CONCLUSION | References |
|--------------|-------------------------|---------|------------|------------|
| Putting it   | all together            |         |            |            |

- Perform *SVD* on the training data,  $M = U_M \Sigma_M V_M^T$ .
- *Project* the test set onto the training set,  $U_M N$ .
- Compute *principal angles* between the training sets and projected test set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- The training set is  $\Sigma_M V_M^T$ .
- The projected test set is  $U_M N$ .

| <b>B</b>     | 000000000000 |  |  |
|--------------|--------------|--|--|
| Putting it a | all together |  |  |

- Perform *SVD* on the training data,  $M = U_M \Sigma_M V_M^T$ .
- *Project* the test set onto the training set,  $U_M N$ .
- Compute *principal angles* between the training sets and projected test set.

- The training set is  $\Sigma_M V_M^T$ .
- The projected test set is  $U_M N$ .

| INTRODUCTION | Methods<br>○○○○○○○○○○○○○ | RESULTS | Conclusion | References |
|--------------|--------------------------|---------|------------|------------|
| Putting it   | all together             |         |            |            |

- Perform *SVD* on the training data,  $M = U_M \Sigma_M V_M^T$ .
- *Project* the test set onto the training set,  $U_M N$ .
- Compute *principal angles* between the training sets and projected test set.

- The training set is  $\Sigma_M V_M^T$ .
- The projected test set is  $U_M N$ .

| INTRODUCTION | Methods<br>○○○○○○○○○○○○○ | RESULTS | Conclusion | References |
|--------------|--------------------------|---------|------------|------------|
| Putting it   | all together             |         |            |            |

- Perform *SVD* on the training data,  $M = U_M \Sigma_M V_M^T$ .
- *Project* the test set onto the training set,  $U_M N$ .
- Compute *principal angles* between the training sets and projected test set.

- The training set is  $\Sigma_M V_M^T$ .
- The projected test set is  $U_M N$ .

| INTRODUCTION | Methods<br>○○○○○○○○○○○○○ | RESULTS | Conclusion | References |
|--------------|--------------------------|---------|------------|------------|
| Putting it   | all together             |         |            |            |

- Perform *SVD* on the training data,  $M = U_M \Sigma_M V_M^T$ .
- *Project* the test set onto the training set,  $U_M N$ .
- Compute *principal angles* between the training sets and projected test set.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The training set is  $\Sigma_M V_M^T$ .
- The projected test set is  $U_M N$ .

|         | Methods<br>00000000000000 | RESULTS | CONCLUSION | References |
|---------|---------------------------|---------|------------|------------|
| Kohonen | 's Noveltv Filter         |         |            |            |

- Kohonen's way to compare the two images and see the difference.
- The process is to pick the best characteristic from each of the test sample by using Singular Value Decomposition.
- The image that we want to test will be projected to the Singular Value Decomposition and subtract from the original, whichever give the smallest two norms (implies smaller difference from the Singular Value Decomposition) will be categorize to be the same class with the image.

・ コット (雪) ( 小田) ( コット 日)



- Kohonen's way to compare the two images and see the difference.
- The process is to pick the best characteristic from each of the test sample by using Singular Value Decomposition.
- The image that we want to test will be projected to the Singular Value Decomposition and subtract from the original, whichever give the smallest two norms (implies smaller difference from the Singular Value Decomposition) will be categorize to be the same class with the image.



- Kohonen's way to compare the two images and see the difference.
- The process is to pick the best characteristic from each of the test sample by using Singular Value Decomposition.
- The image that we want to test will be projected to the Singular Value Decomposition and subtract from the original, whichever give the smallest two norms (implies smaller difference from the Singular Value Decomposition) will be categorize to be the same class with the image.

(ロ) (同) (三) (三) (三) (○) (○)

|          | Methods | RESULTS | CONCLUSION | References |
|----------|---------|---------|------------|------------|
| The equa | tions   |         |            |            |

$$\begin{aligned} X &= SC \times SC' \times TT(:,i) - TT(:,i) \\ Y &= SD \times SD' \times TT(:,i) - TT(:,i) \quad i = 1, 2, ...K, \end{aligned}$$

# If $||X||_2 \le ||Y||_2$ the test consider it to be a cat and it is a dog otherwise.

The reason why the filter pick *SC* or *SD* is because  $SC \times SC' = I$ , where *I* is the identity matrix. As a result after we apply the filter, we should get the same (or close to the original vector) if they are from the same type.

|          | Methods | RESULTS | CONCLUSION | REFERENCES |
|----------|---------|---------|------------|------------|
| The equa | tions   |         |            |            |

$$\begin{aligned} X &= SC \times SC' \times TT(:,i) - TT(:,i) \\ Y &= SD \times SD' \times TT(:,i) - TT(:,i) \quad i = 1, 2, ...K, \end{aligned}$$

If  $||X||_2 \le ||Y||_2$  the test consider it to be a cat and it is a dog otherwise.

The reason why the filter pick *SC* or *SD* is because  $SC \times SC' = I$ , where *I* is the identity matrix. As a result after we apply the filter, we should get the same (or close to the original vector) if they are from the same type.

| INTRODUCTION | Methods<br>○○○○○○○○○ <b>○○○</b> | RESULTS | CONCLUSION | References |
|--------------|---------------------------------|---------|------------|------------|
| KLDA - Ir    | ntroduction                     |         |            |            |

- KLDA generalizes LDA since in the transformed space, the principal components are nonlinearly related to the input variables.
- Kernel Linear Discriminant Analysis (KLDA) maps the input space into a high dimensional, nonlinear feature space. This transformation is carried out by a kernel function φ : X → F.
- Common kernel function is the RBF (Gaussian):  $\phi(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}\right)$  where the assumption is that the classes have a multivariate Gaussian distribution.

|           | Methods     | RESULTS | CONCLUSION | References |
|-----------|-------------|---------|------------|------------|
| KLDA - Ir | ntroduction |         |            |            |

- KLDA generalizes LDA since in the transformed space, the principal components are nonlinearly related to the input variables.
- Kernel Linear Discriminant Analysis (KLDA) maps the input space into a high dimensional, nonlinear feature space. This transformation is carried out by a kernel function *φ* : *X* → *F*.
- Common kernel function is the RBF (Gaussian):  $\phi(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}\right)$  where the assumption is that the classes have a multivariate Gaussian distribution.

|           | Methods     | RESULTS | CONCLUSION | References |
|-----------|-------------|---------|------------|------------|
| KLDA - Ir | ntroduction |         |            |            |

- KLDA generalizes LDA since in the transformed space, the principal components are nonlinearly related to the input variables.
- Kernel Linear Discriminant Analysis (KLDA) maps the input space into a high dimensional, nonlinear feature space. This transformation is carried out by a kernel function *φ* : *X* → *F*.
- Common kernel function is the RBF (Gaussian):  $\phi(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}\right)$  where the assumption is that the classes have a multivariate Gaussian distribution.

METHODS 



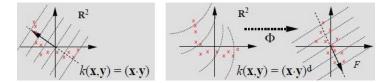


Figure : Feature space transformation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

|           | Methods<br>○○○○○○○○○○● | RESULTS | CONCLUSION | References |
|-----------|------------------------|---------|------------|------------|
| Implement | ation                  |         |            |            |

- After mapping data to feature space, then same procedure as LDA to find optimal direction that separates classes:
  - Rayleigh quotient:  $J(\mathbf{w}) = \frac{\mathbf{w}^T S_B^{\phi} \mathbf{w}}{\mathbf{w}^T S_{\omega}^{\phi} \mathbf{w}}$ .

• Solve generalized eigenvalue problem:  $S_B^{\phi} \mathbf{w} = J(\mathbf{w}) S_W^{\phi} \mathbf{w}$ .

 Performed leave-one-out cross-validation (LOOCV) on training set to find best parameter *σ* for kernel function and energy for dimensionality reduction using principal components analysis (PCA) ([1],[3],[4]).

|          | Methods<br>○○○○○○○○○○○ | RESULTS | CONCLUSION | References |
|----------|------------------------|---------|------------|------------|
| Implemer | Itation                |         |            |            |

- After mapping data to feature space, then same procedure as LDA to find optimal direction that separates classes:
  - Rayleigh quotient:  $J(\mathbf{w}) = \frac{\mathbf{w}^T S_B^{\phi} \mathbf{w}}{\mathbf{w}^T S_{\omega}^{\phi} \mathbf{w}}$ .

• Solve generalized eigenvalue problem:  $S_B^{\phi} \mathbf{w} = J(\mathbf{w}) S_W^{\phi} \mathbf{w}$ .

 Performed leave-one-out cross-validation (LOOCV) on training set to find best parameter *σ* for kernel function and energy for dimensionality reduction using principal components analysis (PCA) ([1],[3],[4]).

|          | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|----------|-------------------------|---------|------------|------------|
| Method o | f testing               |         |            |            |

#### • For each method we run it through cross-validation.

- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• After all the data is collected, we average the results.

|          | Methods<br>000000000000 | RESULTS | CONCLUSION | References |
|----------|-------------------------|---------|------------|------------|
| Method o | f testing               |         |            |            |

- For each method we run it through cross-validation.
- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• After all the data is collected, we average the results.

|          | Methods<br>000000000000 | RESULTS | Conclusion | References |
|----------|-------------------------|---------|------------|------------|
| Method o | f testing               |         |            |            |

- For each method we run it through cross-validation.
- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

After all the data is collected, we average the results.

|          | Methods<br>000000000000 | RESULTS | Conclusion | References |
|----------|-------------------------|---------|------------|------------|
| Method o | f testing               |         |            |            |

- For each method we run it through cross-validation.
- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

• After all the data is collected, we average the results.

|               | Methods<br>000000000000 | RESULTS | Conclusion | REFERENCES |
|---------------|-------------------------|---------|------------|------------|
| Final results | ;                       |         |            |            |

Our testing data consists of 38 images, 19 cats and 19 dogs. As stated before, we ran our algorithms with a varying number (40,50,60,70) of training images.

For each case, we ran 11 iterations cycling through all the images to make sure all images were included at least once in our training set.

For the methods that require cumulative energy, we used 99%.

| IN' | TRC | DU | CTI | ON |
|-----|-----|----|-----|----|
|     |     |    |     | 0N |

RESULTS

CONCLUSION

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

References

### **Final Results**

| Method           | 40    | 50    | 60    | 70    |
|------------------|-------|-------|-------|-------|
| Principal Angles | .8684 | .8421 | .8684 | .8684 |
| Novelty Filter   | .9211 | .9211 | .9211 | .8947 |
| LDA              | .8158 | .8421 | .8421 | .8421 |

Table : Best results from using original data.

|              |  | 0 | ΓT |     | U | 0 |    |  | 1 |
|--------------|--|---|----|-----|---|---|----|--|---|
| INTRODUCTION |  |   |    | Cï. |   |   | `R |  |   |

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

## **Final Results**

| Method           | 40    | 50    | 60    | 70    |
|------------------|-------|-------|-------|-------|
| Principal Angles | .8421 | .8684 | .8684 | .8421 |
| Novelty Filter   | .8947 | .9211 | .8947 | .8947 |
| LDA              | .8421 | .8684 | .8421 | .8421 |

Table : Best results from using first wavelet approximation.

| IN' | TRC | DU | CTI | ON |
|-----|-----|----|-----|----|
|     |     |    |     | 0N |

RESULTS

CONCLUSION

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

# Final Results

| Method           | 40    | 50    | 60    | 70    |
|------------------|-------|-------|-------|-------|
| Principal Angles | 8947  | .8947 | .8947 | .9211 |
| Novelty Filter   | .9211 | .9211 | .9211 | .9211 |
| LDA              | .7632 | .8158 | .7632 | .7632 |

Table : Best results from using first wavelet horizontal detail.

|              |  | 0 | ΓT |     | U | 0 |    |  | 1 |
|--------------|--|---|----|-----|---|---|----|--|---|
| INTRODUCTION |  |   |    | Cï. |   |   | `R |  |   |

RESULTS

CONCLUSION

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

References

## **Final Results**

| Method           | 40    | 50    | 60    | 70    |
|------------------|-------|-------|-------|-------|
| Principal Angles | .9211 | .9211 | .8947 | .8947 |
| Novelty Filter   | .9474 | .9211 | .9211 | .8947 |
| LDA              | .7105 | .6579 | .6579 | .7368 |

Table : Best results from using first wavelet vertical detail.

| IN' | TR | UCT | 1OI |  |
|-----|----|-----|-----|--|
|     |    |     |     |  |

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

## **Final Results**

| Method           | 40    | 50    | 60    | 70    |
|------------------|-------|-------|-------|-------|
| Principal Angles | .8421 | .8684 | .8684 | .8684 |
| Novelty Filter   | .9211 | .9211 | .9211 | .8947 |
| LDA              | .7105 | .6842 | .6579 | .6053 |

Table : Best results from using second wavelet approximation.

| IN' | TR | UCT | 1OI |  |
|-----|----|-----|-----|--|
|     |    |     |     |  |

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

## **Final Results**

| Method           | 40    | 50    | 60    | 70    |
|------------------|-------|-------|-------|-------|
| Principal Angles | .8947 | .8684 | .8684 | .8684 |
| Novelty Filter   | .8947 | .8947 | .8947 | .8947 |
| LDA              | .7895 | .8684 | .8158 | .7895 |

Table : Best results from using second wavelet horizontal detail.

|              |  | 0 | ΓT |     | U | 0 |    |  | 1 |
|--------------|--|---|----|-----|---|---|----|--|---|
| INTRODUCTION |  |   |    | Cï. |   |   | `R |  |   |

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

## **Final Results**

| Method           | 40    | 50    | 60    | 70    |
|------------------|-------|-------|-------|-------|
| Principal Angles | .8421 | .8158 | .8421 | .8684 |
| Novelty Filter   | .8421 | .8158 | .8421 | .8158 |
| LDA              | .5789 | .6579 | .6579 | .7368 |

Table : Best results from using second wavelet vertical detail.

|              | Methods<br>000000000000 | RESULTS | Conclusion | References |
|--------------|-------------------------|---------|------------|------------|
| Final Result | .c                      |         |            |            |

| Data Set   | $\sigma$ | е    | Accuracy          |
|------------|----------|------|-------------------|
| Training   | 6.05     | 0.75 | 0.89375 (143/160) |
| Validation | 5.45     | 0.75 | 0.92105 (35/38)   |

Table : KLDA classification performance.

|           | Methods<br>000000000000 | RESULTS | Conclusion | REFERENCES |
|-----------|-------------------------|---------|------------|------------|
| Final Res | ults                    |         |            |            |

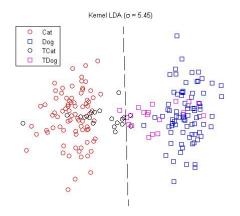


Figure : Separation using KLDA

ъ

ヘロア ヘロア ヘビア・



- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.



- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.



- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.



- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.



- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).



< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

#### Radial Basis Functions

- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).



- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).



- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).



- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).



- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).



- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

| IN |    | 0 | DI | i i | ΓI | 0 |  |
|----|----|---|----|-----|----|---|--|
| IN | IK |   |    |     |    |   |  |

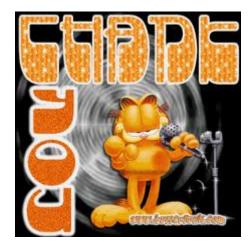
#### IETHODS

RESULTS

CONCLUSION

References

# Thank you



|            | Methods<br>000000000000 | RESULTS | CONCLUSION | REFERENCES |
|------------|-------------------------|---------|------------|------------|
| References |                         |         |            |            |

#### G. Baudat and F. Anouar.

Generalized discriminant analysis using a kernel approach. *Neural Comput.*, October 2000.

Jen-Mei Chang. Matrix methods for geometric data analysis and pattern recognition, 2011.

- S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Muller. Fisher discriminant analysis with kernels, 1999.
- B. Scholkopf, A. Smola, and K. Muller. Kernel principal component analysis, 1999.

#### METHODS

RESULTS

CONCLUSION

REFERENCES

# Any questions?

