▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

Cats vs. Dogs

Raymond Ahn Daradipo Bou Augusto Partida Justin Sunu

CSU, Long Beach

May 10, 2012

	Methods 000000000000	RESULTS	CONCLUSION	REFERENCES
Outline				

Methods

- Wavelet Analysis
- Principal Angles
- Kohonen's Novelty Filter
- Kernel Linear Discriminant Analysis

3 Results

4 Conclusion

INTRODUCTION	Methods 000000000000	RESULTS	CONCLUSION	References
Introduction				

• The goal of this project is to test various algorithms in order to correctly identify images of cats and dogs.

- We ran 4 methods through cross-validation in order to maximize the percentage of correctly identified images.
- And finally, run the final set of test images with each algorithm.

INTRODUCTION	Methods 000000000000	RESULTS	CONCLUSION	REFERENCES
Introduction				

• The goal of this project is to test various algorithms in order to correctly identify images of cats and dogs.

- We ran 4 methods through cross-validation in order to maximize the percentage of correctly identified images.
- And finally, run the final set of test images with each algorithm.

INTRODUCTION	Methods 000000000000	RESULTS	CONCLUSION	REFERENCES
Introduction				

• The goal of this project is to test various algorithms in order to correctly identify images of cats and dogs.

- We ran 4 methods through cross-validation in order to maximize the percentage of correctly identified images.
- And finally, run the final set of test images with each algorithm.

INTRODUCTION	Methods 000000000000	RESULTS	Conclusion	REFERENCES
What is the	process of ima	age recogr	nition?	

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

- Extract various information about the image.
- Use various methods to compare images.

INTRODUCTION	Метнодs 000000000000	RESULTS	Conclusion	References
What is the	process of ima	age recogr	nition?	

• Find a way to reduce the size of the image in order to maximize efficiency.

• Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

What is the	process of ima	ade recoar	nition?	
INTRODUCTION	Methods 000000000000	RESULTS	CONCLUSION	REFERENCES

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

14/1 · · · · ·	00000000000			
What is the	process of im	age reco	ognition?	

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

14/1 · · · · ·	00000000000			
What is the	process of im	age reco	ognition?	

- Find a way to reduce the size of the image in order to maximize efficiency.
- Reconstruct an image using optimal bases so that the most amount of information is captured.

- Extract various information about the image.
- Use various methods to compare images.

INTRO	

METHODS

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

References

The data

Figure : Images of cats and dogs

INTRODUCTION

METHODS

RESULTS

CONCLUSION

REFERENCES

Eigencat and Eigendog

Since eigenvectors are an important aspect of all our methods, we feel it is important to explore the eigencat and eigendog.

Figure : The first 10 eigencats

INTRODUCTION			

Methods

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

References

Eigencat and Eigendog

Figure : The first 10 eigendogs

	Methods •••••	RESULTS	CONCLUSION	References
Wavelet Analysis				

- Wavelet analysis allows us to extract features from an image in the form of "wavelets".
- For images, we require a 2-D scaling function φ(x, y), and three 2-D wavelets, ψ^H(x, y), ψ^V(x, y), and ψ^D(x, y).
- These wavelets measure functional variations (intensity variations for images) along different dimensions: ψ^H measures along the columns, ψ^V measures along the rows, and ψ^D measures along the diagonals [2].

	Methods •0000000000000	RESULTS	CONCLUSION	References
Wavelet /	Analysis			

- Wavelet analysis allows us to extract features from an image in the form of "wavelets".
- For images, we require a 2-D scaling function φ(x, y), and three 2-D wavelets, ψ^H(x, y), ψ^V(x, y), and ψ^D(x, y).
- These wavelets measure functional variations (intensity variations for images) along different dimensions: ψ^H measures along the columns, ψ^V measures along the rows, and ψ^D measures along the diagonals [2].

	Methods ●000000000000	RESULTS	CONCLUSION	References
Wavelet A	Analysis			

- Wavelet analysis allows us to extract features from an image in the form of "wavelets".
- For images, we require a 2-D scaling function φ(x, y), and three 2-D wavelets, ψ^H(x, y), ψ^V(x, y), and ψ^D(x, y).
- These wavelets measure functional variations (intensity variations for images) along different dimensions: ψ^H measures along the columns, ψ^V measures along the rows, and ψ^D measures along the diagonals [2].

	Methods 000000000000	RESULTS	CONCLUSION	References
The equation	ons			

Define the scaled and translated basis functions as:

$$\begin{split} \phi^{j}_{m,n}(x,y) &= 2^{-j/2}\phi(2^{-j}x-m,2^{-j}y-n)\\ (\psi^{j}_{m,n}(x,y))^{i} &= 2^{-j/2}\psi(2^{-j}x-m,2^{-j}y-n), \end{split}$$

The discrete wavelet transform of an image f(x, y) of size $M \times N$ is then:

$$c_{m,n}^{j} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) \phi_{m,n}^{j}(x,y)$$
$$(d_{m,n}^{j})^{i} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x,y) (\psi_{m,n}^{j}(x,y))^{i},$$

where $i = \{H, V, D\}$.

	Methods 000000000000	RESULTS	CONCLUSION	References
The equa	tions			

Define the scaled and translated basis functions as:

$$\begin{split} \phi^{j}_{m,n}(x,y) &= 2^{-j/2}\phi(2^{-j}x-m,2^{-j}y-n)\\ (\psi^{j}_{m,n}(x,y))^{i} &= 2^{-j/2}\psi(2^{-j}x-m,2^{-j}y-n), \end{split}$$

The discrete wavelet transform of an image f(x, y) of size $M \times N$ is then:

$$c_{m,n}^{j} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) \phi_{m,n}^{j}(x, y)$$
$$(d_{m,n}^{j})^{i} = \frac{1}{\sqrt{MN}} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f(x, y) (\psi_{m,n}^{j}(x, y))^{i},$$

where $i = \{H, V, D\}$.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

	Methods 00000000000	RESULTS	CONCLUSION	References
Implemer	ntation			

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2nd iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

	Methods 000000000000	RESULTS	Conclusion	REFERENCES
Implementa	ation			

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2nd iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

	Methods 00000000000	RESULTS	Conclusion	REFERENCES
Implementa	ation			

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2nd iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

	Methods 00000000000	RESULTS	Conclusion	REFERENCES
Implementa	ation			

- In order to implement wavelet analysis, we used MATLAB's "dwt2" function along with the 'Haar' wavelets.
- Since each iteration of DWT creates four images, each of size M/2 × N/2, we only need to do 2 or iterations.
- At the 2nd iteration, we already have a 16 × 16 image, and any further decomposition of it yields very pixelated images with very little information.
- Since wavelet analysis is only a means to generate wavelets (images in our case), analysis of the wavelets are done with the following methods.

INTRODUCTION

Methods

RESULTS

CONCLUSIO

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Decomposition of a cat and dog

Figure : 2 level decomposition of a cat (left) and dog (right).

	Methods	RESULTS	CONCLUSION	REFERENCES
Principal	Anales - Introd	uction		

- A projection, in \mathbb{R}^2 , is a transformation of a vector into a different vectors direction.
- Conceptually, in higher dimensions, this is the equivalent of transforming a vector space into another vector space's direction.
- The advantage of performing a projection is that it allows for easier comparisons.

・ロト・日本・日本・日本・日本

	Methods 0000 000 00000	RESULTS	CONCLUSION	REFERENCES
Principal	Anales - Introd	uction		

- A projection, in \mathbb{R}^2 , is a transformation of a vector into a different vectors direction.
- Conceptually, in higher dimensions, this is the equivalent of transforming a vector space into another vector space's direction.
- The advantage of performing a projection is that it allows for easier comparisons.

	Methods 0000 000 00000	RESULTS	CONCLUSION	REFERENCES
Principal	Anales - Introd	uction		

- A projection, in \mathbb{R}^2 , is a transformation of a vector into a different vectors direction.
- Conceptually, in higher dimensions, this is the equivalent of transforming a vector space into another vector space's direction.
- The advantage of performing a projection is that it allows for easier comparisons.

	Methods 000000000000	RESULTS	CONCLUSION	References
Singular \	alue Decompo	osition		

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices, $M = U\Sigma V^T$.
- U is a unitary matrix, $U^{-1} = U^T$, of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- Σ is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

	Methods 000000000000	RESULTS	CONCLUSION	References
Singular V	alue Decompo	osition		

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices, $M = U\Sigma V^T$.
- U is a unitary matrix, $U^{-1} = U^T$, of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- Σ is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

	Methods 000000000000	RESULTS	CONCLUSION	References
Singular V	alue Decompo	osition		

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices, $M = U\Sigma V^T$.
- U is a unitary matrix, $U^{-1} = U^T$, of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- Σ is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

	Methods 000000000000	RESULTS	CONCLUSION	References
Singular V	alue Decompo	osition		

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices, $M = U\Sigma V^T$.
- U is a unitary matrix, $U^{-1} = U^T$, of M's eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- Σ is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

	Methods 000000000000	RESULTS	CONCLUSION	References
Singular V	alue Decompo	osition		

- Singular Value Decomposition, or SVD, is decomposing a matrix into 3 matrices, $M = U\Sigma V^T$.
- *U* is a unitary matrix, $U^{-1} = U^T$, of *M*'s eigenvectors.
- *U* is an orthonormal basis, which means it can be used as a projection matrix.
- Σ is a diagonal matrix, such that the values of the diagonal are the eigenvalues of *M*.

• V^{T} is a unitary matrix of *M*'s eigenvectors.

	Methods 0000000000000	RESULTS	CONCLUSION	References
Principal	Anales			

- In R², you can use the angle between two vectors to determine how similar they are.
- $\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$
- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

	Methods	RESULTS	CONCLUSION	References
Principal	Angles			

- In R², you can use the angle between two vectors to determine how similar they are.
- $\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$
- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

	Methods 000000000000	RESULTS	CONCLUSION	References
Principal	Angles			

 In ℝ², you can use the angle between two vectors to determine how similar they are.

•
$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$$

- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

(日) (日) (日) (日) (日) (日) (日)

	Methods 000000000000	RESULTS	CONCLUSION	References
Principal	Angles			

 In ℝ², you can use the angle between two vectors to determine how similar they are.

•
$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$$

- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

(日) (日) (日) (日) (日) (日) (日)

	Methods 000000000000	RESULTS	CONCLUSION	References
Principal	Angles			

 In ℝ², you can use the angle between two vectors to determine how similar they are.

•
$$\cos(\theta) = \frac{u \cdot v}{\|u\| \|v\|}$$

- As you go up in dimensions, you start to work with vector spaces, which consists of a multiple vectors. To handle this, you use principal Angles.
- Principal angles is applying the cos(θ) formula for all combinations of vectors among the two vector spaces.

(日) (日) (日) (日) (日) (日) (日)

INTRODUCTION	METHODS 000000000000	RESULTS	CONCLUSION	References
Putting it	all together			

- Perform *SVD* on the training data, $M = U_M \Sigma_M V_M^T$.
- *Project* the test set onto the training set, $U_M N$.
- Compute *principal angles* between the training sets and projected test set.

▲□▶ ▲□▶ ▲三▶ ▲三▶ - 三 - のへで

- The training set is $\Sigma_M V_M^T$.
- The projected test set is $U_M N$.

B	000000000000		
Putting it a	all together		

- Perform *SVD* on the training data, $M = U_M \Sigma_M V_M^T$.
- *Project* the test set onto the training set, $U_M N$.
- Compute *principal angles* between the training sets and projected test set.

- The training set is $\Sigma_M V_M^T$.
- The projected test set is $U_M N$.

INTRODUCTION	Methods ○○○○○○○○○○○○○	RESULTS	Conclusion	References
Putting it	all together			

- Perform *SVD* on the training data, $M = U_M \Sigma_M V_M^T$.
- *Project* the test set onto the training set, $U_M N$.
- Compute *principal angles* between the training sets and projected test set.

- The training set is $\Sigma_M V_M^T$.
- The projected test set is $U_M N$.

INTRODUCTION	Methods ○○○○○○○○○○○○○	RESULTS	Conclusion	References
Putting it	all together			

- Perform *SVD* on the training data, $M = U_M \Sigma_M V_M^T$.
- *Project* the test set onto the training set, $U_M N$.
- Compute *principal angles* between the training sets and projected test set.

- The training set is $\Sigma_M V_M^T$.
- The projected test set is $U_M N$.

INTRODUCTION	Methods ○○○○○○○○○○○○○	RESULTS	Conclusion	References
Putting it	all together			

- Perform *SVD* on the training data, $M = U_M \Sigma_M V_M^T$.
- *Project* the test set onto the training set, $U_M N$.
- Compute *principal angles* between the training sets and projected test set.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- The training set is $\Sigma_M V_M^T$.
- The projected test set is $U_M N$.

	Methods 00000000000000	RESULTS	CONCLUSION	References
Kohonen	's Noveltv Filter			

- Kohonen's way to compare the two images and see the difference.
- The process is to pick the best characteristic from each of the test sample by using Singular Value Decomposition.
- The image that we want to test will be projected to the Singular Value Decomposition and subtract from the original, whichever give the smallest two norms (implies smaller difference from the Singular Value Decomposition) will be categorize to be the same class with the image.

・ コット (雪) (小田) (コット 日)

- Kohonen's way to compare the two images and see the difference.
- The process is to pick the best characteristic from each of the test sample by using Singular Value Decomposition.
- The image that we want to test will be projected to the Singular Value Decomposition and subtract from the original, whichever give the smallest two norms (implies smaller difference from the Singular Value Decomposition) will be categorize to be the same class with the image.

- Kohonen's way to compare the two images and see the difference.
- The process is to pick the best characteristic from each of the test sample by using Singular Value Decomposition.
- The image that we want to test will be projected to the Singular Value Decomposition and subtract from the original, whichever give the smallest two norms (implies smaller difference from the Singular Value Decomposition) will be categorize to be the same class with the image.

(ロ) (同) (三) (三) (三) (○) (○)

	Methods	RESULTS	CONCLUSION	References
The equa	tions			

$$\begin{aligned} X &= SC \times SC' \times TT(:,i) - TT(:,i) \\ Y &= SD \times SD' \times TT(:,i) - TT(:,i) \quad i = 1, 2, ...K, \end{aligned}$$

If $||X||_2 \le ||Y||_2$ the test consider it to be a cat and it is a dog otherwise.

The reason why the filter pick *SC* or *SD* is because $SC \times SC' = I$, where *I* is the identity matrix. As a result after we apply the filter, we should get the same (or close to the original vector) if they are from the same type.

	Methods	RESULTS	CONCLUSION	REFERENCES
The equa	tions			

$$\begin{aligned} X &= SC \times SC' \times TT(:,i) - TT(:,i) \\ Y &= SD \times SD' \times TT(:,i) - TT(:,i) \quad i = 1, 2, ...K, \end{aligned}$$

If $||X||_2 \le ||Y||_2$ the test consider it to be a cat and it is a dog otherwise.

The reason why the filter pick *SC* or *SD* is because $SC \times SC' = I$, where *I* is the identity matrix. As a result after we apply the filter, we should get the same (or close to the original vector) if they are from the same type.

INTRODUCTION	Methods ○○○○○○○○○ ○○○	RESULTS	CONCLUSION	References
KLDA - Ir	ntroduction			

- KLDA generalizes LDA since in the transformed space, the principal components are nonlinearly related to the input variables.
- Kernel Linear Discriminant Analysis (KLDA) maps the input space into a high dimensional, nonlinear feature space. This transformation is carried out by a kernel function φ : X → F.
- Common kernel function is the RBF (Gaussian): $\phi(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}\right)$ where the assumption is that the classes have a multivariate Gaussian distribution.

	Methods	RESULTS	CONCLUSION	References
KLDA - Ir	ntroduction			

- KLDA generalizes LDA since in the transformed space, the principal components are nonlinearly related to the input variables.
- Kernel Linear Discriminant Analysis (KLDA) maps the input space into a high dimensional, nonlinear feature space. This transformation is carried out by a kernel function *φ* : *X* → *F*.
- Common kernel function is the RBF (Gaussian): $\phi(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}\right)$ where the assumption is that the classes have a multivariate Gaussian distribution.

	Methods	RESULTS	CONCLUSION	References
KLDA - Ir	ntroduction			

- KLDA generalizes LDA since in the transformed space, the principal components are nonlinearly related to the input variables.
- Kernel Linear Discriminant Analysis (KLDA) maps the input space into a high dimensional, nonlinear feature space. This transformation is carried out by a kernel function *φ* : *X* → *F*.
- Common kernel function is the RBF (Gaussian): $\phi(\mathbf{x}, \mathbf{y}) = exp\left(-\frac{\|\mathbf{x}-\mathbf{y}\|^2}{2\sigma^2}\right)$ where the assumption is that the classes have a multivariate Gaussian distribution.

METHODS

Figure : Feature space transformation.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

	Methods ○○○○○○○○○○●	RESULTS	CONCLUSION	References
Implement	ation			

- After mapping data to feature space, then same procedure as LDA to find optimal direction that separates classes:
 - Rayleigh quotient: $J(\mathbf{w}) = \frac{\mathbf{w}^T S_B^{\phi} \mathbf{w}}{\mathbf{w}^T S_{\omega}^{\phi} \mathbf{w}}$.

• Solve generalized eigenvalue problem: $S_B^{\phi} \mathbf{w} = J(\mathbf{w}) S_W^{\phi} \mathbf{w}$.

 Performed leave-one-out cross-validation (LOOCV) on training set to find best parameter *σ* for kernel function and energy for dimensionality reduction using principal components analysis (PCA) ([1],[3],[4]).

	Methods ○○○○○○○○○○○	RESULTS	CONCLUSION	References
Implemer	Itation			

- After mapping data to feature space, then same procedure as LDA to find optimal direction that separates classes:
 - Rayleigh quotient: $J(\mathbf{w}) = \frac{\mathbf{w}^T S_B^{\phi} \mathbf{w}}{\mathbf{w}^T S_{\omega}^{\phi} \mathbf{w}}$.

• Solve generalized eigenvalue problem: $S_B^{\phi} \mathbf{w} = J(\mathbf{w}) S_W^{\phi} \mathbf{w}$.

 Performed leave-one-out cross-validation (LOOCV) on training set to find best parameter *σ* for kernel function and energy for dimensionality reduction using principal components analysis (PCA) ([1],[3],[4]).

	Methods 000000000000	RESULTS	CONCLUSION	References
Method o	f testing			

• For each method we run it through cross-validation.

- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• After all the data is collected, we average the results.

	Methods 000000000000	RESULTS	CONCLUSION	References
Method o	f testing			

- For each method we run it through cross-validation.
- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

• After all the data is collected, we average the results.

	Methods 000000000000	RESULTS	Conclusion	References
Method o	f testing			

- For each method we run it through cross-validation.
- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

After all the data is collected, we average the results.

	Methods 000000000000	RESULTS	Conclusion	References
Method o	f testing			

- For each method we run it through cross-validation.
- Furthermore, we used different sets of different numbers of training images in order to find the "optimal" number of training images in order to produce the best results.
- Logically, it would seem that using all images as a training set would be the best, but if we could produce the same results with half as many, then the time it takes will be reduced.

• After all the data is collected, we average the results.

	Methods 000000000000	RESULTS	Conclusion	REFERENCES
Final results	;			

Our testing data consists of 38 images, 19 cats and 19 dogs. As stated before, we ran our algorithms with a varying number (40,50,60,70) of training images.

For each case, we ran 11 iterations cycling through all the images to make sure all images were included at least once in our training set.

For the methods that require cumulative energy, we used 99%.

IN'	TRC	DU	CTI	ON
				0N

RESULTS

CONCLUSION

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

References

Final Results

Method	40	50	60	70
Principal Angles	.8684	.8421	.8684	.8684
Novelty Filter	.9211	.9211	.9211	.8947
LDA	.8158	.8421	.8421	.8421

Table : Best results from using original data.

		0	ΓT		U	0			1
INTRODUCTION				Cï.			`R		

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

Final Results

Method	40	50	60	70
Principal Angles	.8421	.8684	.8684	.8421
Novelty Filter	.8947	.9211	.8947	.8947
LDA	.8421	.8684	.8421	.8421

Table : Best results from using first wavelet approximation.

IN'	TRC	DU	CTI	ON
				0N

RESULTS

CONCLUSION

References

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

Final Results

Method	40	50	60	70
Principal Angles	8947	.8947	.8947	.9211
Novelty Filter	.9211	.9211	.9211	.9211
LDA	.7632	.8158	.7632	.7632

Table : Best results from using first wavelet horizontal detail.

		0	ΓT		U	0			1
INTRODUCTION				Cï.			`R		

RESULTS

CONCLUSION

▲□▶▲圖▶▲≣▶▲≣▶ ▲■ のへ⊙

References

Final Results

Method	40	50	60	70
Principal Angles	.9211	.9211	.8947	.8947
Novelty Filter	.9474	.9211	.9211	.8947
LDA	.7105	.6579	.6579	.7368

Table : Best results from using first wavelet vertical detail.

IN'	TR	UCT	1OI	

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

Final Results

Method	40	50	60	70
Principal Angles	.8421	.8684	.8684	.8684
Novelty Filter	.9211	.9211	.9211	.8947
LDA	.7105	.6842	.6579	.6053

Table : Best results from using second wavelet approximation.

IN'	TR	UCT	1OI	

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

Final Results

Method	40	50	60	70
Principal Angles	.8947	.8684	.8684	.8684
Novelty Filter	.8947	.8947	.8947	.8947
LDA	.7895	.8684	.8158	.7895

Table : Best results from using second wavelet horizontal detail.

		0	ΓT		U	0			1
INTRODUCTION				Cï.			`R		

RESULTS

CONCLUSION

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

References

Final Results

Method	40	50	60	70
Principal Angles	.8421	.8158	.8421	.8684
Novelty Filter	.8421	.8158	.8421	.8158
LDA	.5789	.6579	.6579	.7368

Table : Best results from using second wavelet vertical detail.

	Methods 000000000000	RESULTS	Conclusion	References
Final Result	.c			

Data Set	σ	е	Accuracy
Training	6.05	0.75	0.89375 (143/160)
Validation	5.45	0.75	0.92105 (35/38)

Table : KLDA classification performance.

	Methods 000000000000	RESULTS	Conclusion	REFERENCES
Final Res	ults			

Figure : Separation using KLDA

ъ

ヘロア ヘロア ヘビア・

- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.

- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.

- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.

- Kohonen's Novelty Filter yielded the best overall performance with a peak of .9474 using 40 training images with the level 1 vertical detail wavelet.
- The number of images in the training set does affect the accuracy, but more importantly, which images are captured in the training set are more important.
- KLDA demonstrated best separation of classes over PCA and KPCA, but did not project well.
- MidRange (nonparametric) threshold classification boundary performed better than (parametric) Mahalanobis distance. This is an indicator that the data may not be Normal.

- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Radial Basis Functions

- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

- Radial Basis Functions
- Labeled Voronoi cell classification
- Set-to-set comparison with principal angles and Grassmannian distances
- Fourier Analysis
- Edge-based analysis
- Comparing different kernel function(s).

IN		0	DI	i i	ΓI	0	
IN	IK						

IETHODS

RESULTS

CONCLUSION

References

Thank you

	Methods 000000000000	RESULTS	CONCLUSION	REFERENCES
References				

G. Baudat and F. Anouar.

Generalized discriminant analysis using a kernel approach. *Neural Comput.*, October 2000.

Jen-Mei Chang. Matrix methods for geometric data analysis and pattern recognition, 2011.

- S. Mika, G. Ratsch, J. Weston, B. Scholkopf, and K. Muller. Fisher discriminant analysis with kernels, 1999.
- B. Scholkopf, A. Smola, and K. Muller. Kernel principal component analysis, 1999.

METHODS

RESULTS

CONCLUSION

REFERENCES

Any questions?

