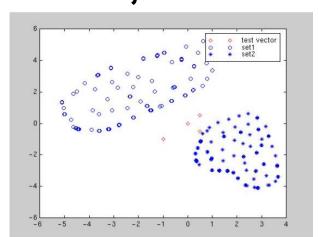
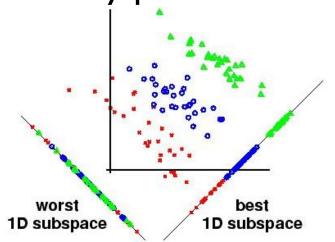
Classifications of Cats and Dogs

Math 521

Presenters: John Hammer & Tuyen Ly

Introduction


Theoretical Background


- Binary Filter
 - Try to get the shape of the images

Theoretical Background

Method I – Linear Discriminant Analysis (LDA)

- Principal Component Analysis (PCA)
 - Optimal basis (orthogonal basis)
- Fisher's Discriminant Analysis (FDA)
 - Project to line with boundary point

Theoretical Background

Method 2

- Novelty Filter
 - Applying PCA to obtain basis of training set
 - Decompose test data in two components
 - Subspace
 - Residual (Orthogonal to subspace)
 - Calculate norm of residual
 - Smaller is the classified

Algorithm Implementation

Binary Filter

- •Finds Median
- ∘≥ Median = I
- \circ Median = 0

Algorithm Implementation

Method I: Linear Discriminant Analysis (LDA)

Reduce dimension of training/test data

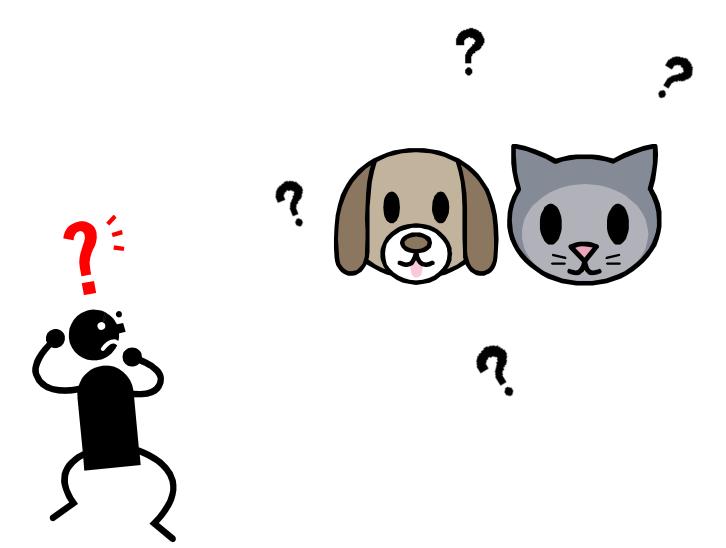
0

Algorithm Implementation

Novelty Filter

Computational Results

Method I – LDA (78.95%)


Classify Actual	Dogs	Cats
Dogs	16	3
Cats	5	14

Computational Results

Method 2: Novelty Filter (94.74%)

Classify Actual	Dogs	Cats
Dogs	17	2
Cats	0	19

Questions???

