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Abstract

Recent research in perinatal pathology argues that analyzing properties of the placenta may reveal
important information on how certain diseases progress. One important property is the structure of the
placental blood vessels, which supply a fetus with all of its oxygen and nutrition. An essential step in
the analysis of the vascular network pattern is the extraction of the blood vessels, which has only been
done manually through a costly and time-consuming process. There is no existing method to automat-
ically detect placental blood vessels; in addition, the large variation in the shape, color, and texture of
the placenta makes it difficult to apply standard edge-detection algorithms. We describe a method to
automatically detect and extract blood vessels from a given image by using image processing techniques
and neural networks. We evaluate several local features for every pixel, such as intensity, gradient, and
variance, in addition to a novel modification to an existing road detector. Pixels belonging to blood vessel
regions have recognizable responses; hence, we use an artificial neural network to identify the pattern of
blood vessels. A set of images where blood vessels are manually highlighted is used to train the network.
We then apply the neural network to recognize blood vessels in new images. The network is effective in
capturing the most prominent vascular structures of the placenta.

1 Introduction

Understanding placental vasculature can help doctors
identify where prenatal development diverged from
normality. This could potentially help lead to ear-
lier diagnoses of significant life-long diseases [21, 23].
However, the process of identifying placental blood
vessels is currently costly and time-consuming; an
expert must hand-trace the vessels in each placental
image. By automating the detection of blood vessels,
we hope to increase efficiency and reduce costs for
emerging placental research.

1.1 Overview of Methods

To our knowledge, there is no single characteristic
that can be used to accurately identify a placental
vessel, as there is significant variance between placen-
tas. For example, some placentas are covered in red
blood while others appear brown or grey; some have
thick, pronounced vessels while others have thinner
ones.

Rather than formulating an explicit model for pla-
cental vasculature, we account for this variability by
computing numerous “features” for the image and
then feeding those features to a neural network. Such

a neural network must then undergo training, where
it is given a ground truth (a hand-traced vascular
network) and then iteratively determine weights for
these features in order to better detect blood vessels.
Once trained, a network can then be simulated on ad-
ditional placenta images in order to identify vessels.
For a more thorough introduction to neural networks,
see [8].

Unless otherwise specified, all feature computa-
tions and network simulations are performed on the
green channel of the placenta image. We do this
because our initial inspections revealed that blood
vessels appeared most distinct and recognizable in
the green channel. Preliminary results also suggested
that this was desirable over computing features us-
ing other channels or RGB-to-gray conversions. Simi-
larly, vessels appeared darker than their surroundings
in the green channel, so algorithms described in the
following sections assume dark vessels. The validity
of this assumption is discussed in Section 7.

2 Pre-Processing

Before being analyzed, all placental images are pre-
processed to ultimately improve the performance of
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Figure 1: Shown is an example of placenta extraction.

subsequent algorithms.
We first extract the placenta by applying a thresh-

old and some morphological operations on the green
channel. We then crop the image, thereby making
future calculations more efficient (Fig. 1).

The majority of images we work with feature large
patches of glare, so an in-painting approach is used.
This method of glare removal is a simplified approach
taken by [12] and has comparable results. First,
bright spots are identified as those pixels with an in-
tensity above a pre-determined threshold, which we
take to be 80% of the maximum intensity. Second, a
top-hat filter is applied, and additional thresholding
then accurately identifies appropriate glare regions.
Third, the regions are dilated by several pixels in
order to place the region boundaries on pixels un-
affected by glare. Finally, solving Laplace’s equation
(1) fills in the regions, which produces satisfactory
results as seen in Figure 2.

uxx + uyy = 0; u(x, y) = I(x, y) ∀x, y ∈ ∂Ω (1)

We found that performing glare removal prior to the
cropping procedure is preferable, as otherwise some
glare regions could be unintentionally cropped.

3 Features

We decided to borrow the neural-net approach of Ma-
lik [19], as explained in Section 3.1.4. This meant
that numerous features would be computed for a pla-
centa and then later fed to a neural network to detect
vessels.

Some features that were computed on placenta
images are described in the following subsection.
Other features including variance, curvature, eigen-
values of the 2nd moment matrix [19], gradient mag-
nitude, and gradient orientation [19], but we do not
describe them here since they are relatively straight-
forward.

Neural networks trained using only these more
straightforward features were found to be inappropri-

ate for vessel detection since, in most cases, networks
that use these features simply detect vessel edges but
not the interiors of the vessels themselves. How-
ever, these characteristics were still included along-
side more intricate features in the event that they
might reveal any implicit vessel information.

3.1 Line Detectors

It was noted that in the green channel individual ves-
sels show little variance in intensity after glare has
been removed. Hence, when considering additional
features to implement we focused on those that could
detect thick, uniform, curvilinear structures. We im-
plemented several conventional line detectors, such
as Steger’s line detector [25], a phase-coded detector
[5], and a slightly modified wide-line detector [15], to
be used as additional features for our neural network.
We give a brief overview of these detectors as well as
any differences between our implementations and the
literature.

3.1.1 Phase Coding

For this detector we use a complex-valued linear filter
given by [5] with kernel

PC(x, y) = e2i tan−1(y−y0, x−x0),

where x and y are coordinates within a circle of ra-
dius R inscribed within a square window; (x0, y0)
is the center of the window; and values within this
window but outside of the disk are taken to be 0. A
potential drawback of this detector is that it will de-
tect both bright and dark lines, and intersections are
only weakly identified.

3.1.2 Wide-line Detector

This a more recent detector described by Liu et al.
[15] that has seen success in similar medical contexts
[15, 16]. The detector consists of a nonlinear filter,
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Figure 2: A raw image is shown on the left, with glare removed on the right.
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Figure 3: The error magnitude for sech(x5) and its 20th-order Padé appoximant f(x). Note from Equation
2 that |x| ≤ 1/t, since intensities can differ by at most ±1.

where, for each pixel in the image, we tally the num-
ber of surrounding pixels within a radius R that differ
in intensity by at most t when compared to the cen-
ter pixel. However, to smooth small intensity changes
that occur near the threshold t, Liu actually tallies
all pixels within this disk but weights them as

s(x, y, x0, y0, t) = sech
(

(I(x, y)− I(x0, y0))5

t5

)
,

(2)
where I(x, y) is the intensity at (x, y).

For computational efficiency, we use a 20th-order
Padé approximant for sech(x5) taken about x0 = 0,
namely

sech(x5) ≈ 15120 + (13x10 − 660)x10

15120 + (6900 + 313x10)x10
,

where x10 is computed from x using a logarithmic
number of multiplications, as Matlab’s underlying
C-based exponentiation function is highly inefficient.
This approximant models the desired function very

closely (Fig. 3) and exhibits significant speed im-
provements.

3.1.3 Steger’s Detector

Steger’s algorithm for thick line detection [25] is avail-
able online from the GRASP project [2] and is li-
censed under the GNU General Public License [10].
We incorporated this code into our Matlab project
by using Mex.

As provided, the Steger detector only gives a re-
sponse at the center and on the edge of a thick line.
Hence, to make this output more appropriate as a
feature, these lines were filled in. At each pixel along
the center of a line, pixels along the normals (for the
appropriate width) were assigned a value of the line’s
“response,” or the second-derivative of the line at
that point, as described by Steger [25]. This yielded
results surprisingly similar to the wide-line detector;
the two methods largely agreed on the larger vessels,
but differed more in the noisier, vessel-free regions of
the placenta.
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3.1.4 Modified Road Detection

We also implemented a novel modification to an ex-
isting road-detection technique [22] that made the
method much more suitable for detecting vessels.
Porikli uses a directional line filter to look for elon-
gated rectangular regions in-between two homoge-
neous regions of different intensity levels on either
side. This filter is somewhat limiting because it can
only detect lines with a maximum thickness of five or
six pixels, whereas blood vessels can be much thicker.

We multiply Porikli’s directional line filter [22] by
a Gaussian function in order to allow the filter to
identify wider structures, with more weight towards
the center. Our new filter is given as

gθ(i, j) = cos
(
πi′

2M

)
cos
(
πj′

M

)
e
−(i2+j2)
2(0.9M)2 (3)

where M is fixed, i, j = −M, . . . , M , and i′, j′ are
coordinates rotated by θ. We tried different values
for the coefficient of M in the Gaussian function and
found M = 0.9 to be the most effective for reduc-
ing noise while still retaining all the vessel informa-
tion. We convolve this new filter over the entire im-
age. Porikli’s filter assumes that roads are generally
brighter than their surrounding areas, but we found
that most of the placentas we worked with had blood
vessels that were darker than the neighboring tissue,
so we resolve this by inverting the convoluted image.
We repeat this process for values of θ between 0 and
π and combine the outputs for an overall result of

L =

∣∣∣∣∣∑
θ∈Θ

e2πi(gθ ? I)+

∣∣∣∣∣ (4)

where Θ = {0, π/8, . . . , 7π/8} and I is the input
image.

We found that using differently sized filters on the
image could help detect small as well as large vessels,
so we applied the filter with four different sizes of M ,
including 4, 7, 11, and 15. We created a simple noise
reduction technique that labels all the connected seg-
ments and eliminates those with fewer pixels than a
certain threshold, usually between 200 and 400 pix-
els. To combine the results from the small and large
line filters, we fuse together the four images. Again
we can threshold the image to increase accuracy and
reduce noise. Since there will only be four values in
the normalized image, it’s very simple to show points
where a certain number of the four filters found a ves-
sel. For example, by setting all points with a value of
0.25 to 0, the resulting image will show only points
where two or more filters found a vessel, eliminating
any accidental noise from one filter.

We found that our enhanced road detection
method was superior to the other line detectors when
used on placental images. However, this method fails
on blood vessels that are softer and brighter than
their surrounding tissue. No single detector could
sufficiently and reliably identify all blood vessels; and
simple arithmetic and morphological combinations of
the detectors were also inadequate. Thus, we chose to
borrow the neural-net approach taken by Malik [19];
the purpose of our neural network being to resolve the
output from all of the features above, particularly the
line detectors, while minimizing false-positives in the
final result.

4 Neural Network Training

We use a set of manually traced images to train a
neural network to detect blood vessels. Ideally, we
would choose all pixels belonging to the placenta re-
gion to form the training set; however, our machines
have limited memory, and the training time is pre-
ferred to be minimal. We overcome these problems
by applying the following steps before training:

• Randomly pick n pixels from each traced image.

• For each pixel, compute its features and a bi-
nary value indicating whether it is a blood ves-
sel.

• Randomly permute the sequence of pixels so
that no single image can bias the training.

Manually tracing a vasculature network is sub-
ject to human interpretation. When we examined
the traced images, we noticed that traced lines some-
times do not accurately cover vessels. This impreci-
sion may affect the accuracy of the neural network
output. To reduce the impact of these outliers, we
added an option to transform the binary traced data
to grayscale by convolving it with a Gaussian ker-
nel, thereby giving greater weight to regions that
had been traced while still allowing positive responses
outside the traced areas. We also considered using
mean-absolute error instead of mean-squared error
when evaluating a network’s performance, as it is
more robust to outliers in the training data.

To determine the optimal combination of the fea-
tures described in Section 3, numerous neural net-
works were trained with all possible combinations of
3-or-more features from all available features. This
exhaustive search of the feature space was neces-
sary because the processes of neural network train-
ing is not sufficient to determine which features are
unneeded; determining those features to assign zero
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Figure 4: The original piece of the placenta (left) compared with the results from the smallest and largest
road detection filters (middle). The rightmost image shows the modified road-detection feature on a whole
placenta.

weight requires exponential time (since the greedy ap-
proach is not guaranteed to be optimal) but training
occurs in polynomial time.

In addition, various parameters for the networks,
such as the performance function (mean-squared er-
ror or mean-absolute error), the number of hidden
nodes (5 or 15), how to normalize features (between
[0, 1] or [−1, 1]), and whether to apply a Gaussian
blur to training data were also tested.

5 Post-Processing

Our neural networks largely produced soft classifica-
tions of blood vessels, so further processing of these
results was necessary. Grayscale neural-net outputs
were thresholded to obtain a binary classification.
These black-and-white images were then filtered for
size; components smaller than usually 400 pixels were
discarded as noise. Further filtering this by eccentric-
ity (e.g., taking only highly eccentric, line-line ob-
jects), as suggested by [16], was found to be unreli-
able. Due the relatively high connectivity of our iden-
tified vessels, many components have low eccentricity,
which is uncharacteristic of lines. Additionally, the
edge is eroded since many of our detectors detected
the edge of the placenta as a vessel.

In a few cases the neural network would produce
an almost binary classification, with very few gray
pixels. Thresholding was also applied in those cases.

6 Measuring Network Perfor-
mance

Once the neural-net output was post-processed, it re-
mained to be shown which resulting binary classifica-
tion was “best.” Several metrics were used to com-
pare the classifications to the traced data.

Between a given pixel P1 from the target image
and the corresponding pixel P2 from the predicted
image, four different conditions can occur:

• True Positive: Both pixels P1 and P2 have a
value of one.

• True Negative: Both pixels P1 and P2 have a
value of zero.

• False Positive: P1 has a value of zero while P2

has a value of one.

• False Negative: P1 has a value of one while P2

has a value of zero.

From these four conditions, we form the following bi-
nary classifications:

• TP: the total number of true positive pixels

• TN: the total number of true negative pixels

• FP: the total number of false positive pixels

• FN: the total number of false negative pixels.

These binary classifications can be used to form
different metrics for a network’s performance. The
ROC curve is one of these metrics. It is usually used
to visualize the performance of different algorithms,
but the ROC curves are not a good tool to choose the
optimal algorithm [9]. To plot the ROC curves, two
quantities are needed: the false positive rate

FPR =
FP

FP + TN

and the true positive rate

TPR =
TP

TP + FN
.

The ROC curve is the set of all such pairs
(FPR, TPR).
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We can use the ROC curve to visually compare
the performance of the neural-network technique ver-
sus individual features such as the wide-line and the
road detection algorithms. Since the output of each
algorithm is a grayscale image, a threshold is applied
as described in Section 5 to obtain a binary image.
This binary image and the image of manually traced
blood vessels work as the predicted and target im-
ages, respectively. The threshold value is varied in-
creasingly between 0 and 1. For each threshold value,
FPR and TPR are computed from the binary clas-
sifications. The result is a ROC curve, as shown in
Figure 6.

While the ROC curve is a good tool to visualize
the performance of a network, it is not efficient in
choosing the optimal algorithm, nor the best thresh-
old to use for a particular network. A better metric is
the Matthew Correlation Coefficient, or MCC, which
puts more emphasis on the correlation between the
two images rather than the actual accuracy in the
prediction (see Fig. 6). The MCC uses the binary
classification as following

MCC =
TP × TN − FP × FNp

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
.

The area under the MCC curve was measured for
each neural network, and the network with the largest
area was chosen to be the optimal network. From the
MCC curve, one can also compute the optimal thresh-
old value. This value was used as the initial threshold
value for the graphical user interface.

7 Results

A result of our method is shown in Figure 6. While
not perfect, the neural network does identify many
prominent vessels. We note that the width of the de-
tected vessels is more accurate than in the manual
tracing. Noise is present in the classifications, which
is why we provide a feature in our GUI frontend for
the user to erase classified vessels.

While the neural nets can perform well for some
placentas, such as the one shown in Figure 6, there
are many others where the classification is very unre-
liable. This is because, contrary to our assumption,
many placentas feature vessels that appear brighter
in the green channel. Hence, identifying dark lines
in the green channel is not is not always appropriate;
this is discussed further in Section 8.

A side-effect of the randomization of training
data, described in Section 4, is that several networks
trained using the same features can have variable per-
formance. To account for this, we train several (usu-
ally 3) networks using the same features and the same
training images. We then simulate all of these net-
works and average their results; this produces more

connected vasculature than just taking a single net-
work on its own. This is demonstrated in Figure 7.

With 5 binary options and 8 features in all, there
were 25

∑8
k=3

(
8
k

)
= 7008 possible nets to generate.

This number was reduced to approximately 2000 by
eliminating the binary options that did not seem im-
mediately beneficial after preliminary results (e.g.,
blurring training data and normalizing to [−1, 1]).
However, due to hardware limitations we were only
able to generate roughly 1292 of those 2000. Hence
our results are somewhat incomplete, but still promis-
ing.

With that incompleteness in mind, we found that
the neural net with the highest area under its MCC
curve (0.22) used: the gradient magnitude and gradi-
ent angle, the wide-line detector, the Steger detector,
and our modified road detector.

We found that, in-general, nets that used the
mean-absolute error for their performance function
performed slightly better than those that used mean-
squared error. Blurring training data to reduce the
impact of outliers had little effect on performance.
Somewhat surprisingly, networks with only five hid-
den nodes performed better than networks with 15-
or-more hidden nodes; they were also faster to train
and simulate. We were unable to determine whether
normalizing features to [0, 1] or [−1, −1] was prefer-
able, although we use the range [0, 1] in our GUI.

Input images were 1,200 by 1,600 pixels, and the
computations to compute image features were com-
pleted within two minutes for each image using a
2.13GHz Core 2 Duo with 2GB of RAM without down
sampling. Most of this time was spent computing the
wide-line detector and our modified road detection
feature. The time to train a neural network usually
took 5 minutes, however only a subset (8 images) of
all available images were used to train. Training with
more images had little impact, possibly implying that
the sampled points taken from those 8 images were
abundant enough to be reflective of an “average” pla-
centa’s vascular network.

8 Future Work

We found our method is effective at identifying blood
vessels, and we are confident it can eventually be used
to help facilitate placental research. Future work will
involve testing additional features for use with the
neural network; evaluating performance metrics for
the effectiveness of a network; and implementing a
post-processing technique to improve the results of
the network. A more long-term goal is to eventually
be able to compute network statistics for identified
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Figure 5: An example to motivate the MCC metric. A hypothetical neural-net prediction is shown in red,
with a desired target in red. Although the prediction largely does not agree with the target, there is a strong
correlation between the two shapes.

Figure 6: The original placenta (left) compared with the hand-traced data (right) and the result of our
neural network. The particular features used are given in Section 7. The placenta is the same as the one
shown in Fig. 3.1.4.

Figure 7: An ROC curve for a neural network is shown (left) and compared with individual features, and an
MCC profile is also shown (right) for a different neural network. Neither of these networks are the same as
the one used in Figure 6, but almost all networks exhibited similar performance.
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Figure 8: On the left is the result from one neural network. On the right is the average (and the post-
processed) result from three neural nets trained using the same features and training data. The randomiza-
tion of the training process seems to be mitigated by using several nets.

vasculature and then correlate those statistics with
medical data. These correlations might then help
identify placental characteristics that could be used
to identify at-risk children.

Currently, inputs to our neural networks are fea-
tures computed for individual pixels. To make the re-
sults of these networks more context-aware, we could
borrow the technique used by Boggess [4] where the
network is fed features computed at the pixel in ques-
tion as well as the features for all neighboring pixels.
Although he found this approach to be ineffective for
road detection in satellite imagery, it may still be use-
ful for placentas, especially considering that Boggess’
result is from 1993. Other learning methods such as
k-nearest neighbors could also be investigated.

A C implementation of the wide-line detector
would provide tremendous speed improvements wher-
ever that feature is used.

We have adapted Steger’s detector to return a
grayscale image with entire curvilinear structures
filled in. However, the process used to fill in these
structures is näıve and often leaves 1-pixel “holes” in
the lines. This should be improved, as it could po-
tentially lead to problems if morphological operations
are ever performed on results from the detector.

The algorithm presented in [18] might be useful
for filling in gaps, where neural network output would
be given as the necessary seed values. This algorithm
could also be used to more easily distinguish between
arteries and veins, because it seems capable of cor-
rectly handling vessel crossings instead of treating all
crossings as intersections.

We considered blurring as part of the pre-
processing stage but did not have time to implement
it. Ideally, this would blur away smaller vessels and
wrinkles, leaving the larger, more important vessel

structures intact. While this could potentially reduce
the number of wrinkles we classify as vessels, in real-
ity we would expect this to, at most, reduce noise in
some of our features; most of our detectors already
fail to identify smaller vessels.

The scale of images used is currently not consid-
ered at all, which is problematic when handling im-
ages of different resolutions. All of our parameters
have been tuned to best detect vessels in 1,200-by-
1,600 images, meaning our methods would almost
certainly not work as well on larger or smaller pic-
tures. Luckily, most placental images contain a ruler
or penny, which could be extracted and then used for
scale normalization.

Finally, our assumption that vessels appear dark
in the green channel does not hold for all placen-
tas. Hence, detecting brighter lines should also be
investigated. Sometimes a placenta’s vessels will ap-
pear as dark and bright lines in the green channel,
so bright-line detection should also be investigated,
as well as how to accurately resolve the two line
types (e.g., a dark vessel is often sandwiched between
bright areas, which could be incorrectly identified as
bright vessels). The wide-line detector as well as Ste-
ger’s detector describe techniques for detecting bright
lines [15, 25]; these require only small changes in the
code. We had difficulty modifying our road-detection
method to detect bright lines.
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