
VEIN ROUTE TRACING

JENNIFER GIDDINGS, NEN HUYNH,
ZAC SCHOENROCK, MARILYN VAZQUEZ

Abstract. We had twelve weeks to design and develop a program that
would automatically identify veins on an image of a placenta. In order
to accomplish this task, we intended to write a program in MATLAB
to identify the edges of the veins in the image, find points in the center
of the veins based on their edges, identify key characteristics of the
points in the center of the veins, and then use those characteristics to
correlate the points and rebuild the veins mathematically. By visualizing
the image as an intensity map in MATLAB, we developed a strong and
workable plan to accomplish these goals. We succeeded on the first three
of these four steps before running out of time and are confident that we
would have been able to complete the final step given enough time. Our
method has a strong chance of making connections often lacking in other
automated processes, especially in the case of smaller veins. In order to
finish the program, we would next need to correlate the characteristics
of the points identified to be in the center of the veins to reconstruct
each vein.

1. Introduction

The placenta is the unsung hero of pregnancy, keeping the fetus alive,
healthy, and well fed while in the mother’s womb. It is the temporary
organ that provides nutrients and removes waste. The placenta has recently
come into focus as a potential predictor of adolescent pathologies and adult
medical conditions. How much of someone’s future can be foretold by their
placenta is still an open question. We have studied the veins of the placenta
and hope that our work will help doctors plan preventative maintenance to
keep people healthy.

The structure of the veins on the surface of the placenta may tell us more
about the baby’s future. We are focusing on building an automated program
to make a schematic of the vein structure from the placenta image. We
intend to develop an algorithm that will automatically identify the positions
of the veins. Furthermore, our algorithm will determine a mathematical
representation of each vein, so that we can fill in the gaps left by other image
processing techniques. This will hopefully build complete veins instead of
segments to be connected by hand. Almoussa et al. has already developed
a program that identifies and draws a picture of the veins [1]. Their vein
structure has a large number of gaps in veins that would clearly be connected

Date: May 20, 2011.

1

2 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

if the veins were traced by hand, as can be seen in figure 1. Unfortunately,
generating maps of vein structures by hand is extremely time consuming and
expensive. Our mathematical representations of the veins should enhance
the others’ results [1] without consuming the time and resources required to
go through each of thousands of images by hand.

Figure 1. Left is an output image from the Almoussa, et
al. [1]. Many of the veins are broken and do not connect as
a clear system. To the right is their hand traced version of
the same image.

2. Methods

2.1. Outline of Methods. The programs and ideas behind this project
were all designed and built from the ground up rather than building off
of the work of others. We did this for a variety of reasons, but primarily
because of the time constraint we had to complete this work. We chose to
use a simple methodology rather than spend time patching together what
others have done.

Our sample image is an 81 by 81 pixel section of the original 1024 by
768 placenta image in figure 2. We chose to use this particular cropped
image because it has at least one large and one small vein that needed to be
identified, as well as an interesting feature of the veins crossing each other.
An intensity map of the image was made in MATLAB. We used Canny Edge
Detection to locate the edges of the veins. Then we determined criteria
for and located “strong points” as pixels in the middle of veins. Several
characteristics of these strong points were identified to be used to connect
the strong points together into a complete vein based on a correlation of
these characteristics.

VEIN ROUTE TRACING 3

Figure 2. Original placenta image that we took our test
image from, as seen below and to the right.

2.2. Intensity Map. MATLAB takes the sample image and converts into
as a 3-dimensional topographical map, also known as an intensity map, figure
3, using the “surf” function. Looking at the image this way was inspired by
Meth and Chellappa [5]. As we compared the intensity map to the original
image, we noticed a correlation between the valleys of the intensity map and
the veins that can be seen with the naked eye in the original image. We
decided to focus on extracting information about the points in the valleys.
By extracting enough information from each point in the valley, we can
then use that information to automatically connect points in each valley,
reconstructing each vein.

2.3. Identifying Edges. In the intensity map, the edges of the veins are
the walls of the valleys. We were able to use Canny Edge Detection (CED)
to identify these walls because our image has “strong intensity contrasts, a
jump in intensity from one pixel to the next [3].” Green gives three criteria
why CED is the most effective technique to identify edges. Canny Edge
Detection has a “low error rate” compared to other edge detectors, the

4 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

Figure 3. Test image intensity map from above point of view.

edges found are “well localized” to the locations of the actual edges, and the
marked edges are only one pixel wide, rather than identifying a region as an
edge. All of this means that we will get a clear set of edges to work with.

The Canny Edge Detector begins by smoothing the original image using
the Gaussian normal distribution as a filter. Next, CED takes the gradient
of the intensity map in the x and y directions. It uses the magnitude of
the gradient to measure the slopes of the curves on the map. Pixels with
gradients of large magnitude indicate a rapid change in intensity, which is an
edge. Once it has built a list of the slopes from the intensity map, it chooses
a set of thresholds unique to each image, designating the top thirty percent
of the slopes as high, the next thirty percent as medium, and the remaining
points as low, as categorized in figure 4. The low points are ignored because
they are obviously not edges. There is then a set of decision criteria to sort
through the high and medium points to identify them as edges or not. This
is largely based on the gradients of the neighboring points, where medium
points that are isolated from high points will not be identified as edges, but
all high points and medium points connected to high points will be marked
as edges. Figure 4 shows how the Canny Edge Detector might operate on a
small sample of points.

2.4. Build List of Strong Points Within Veins. Now that we have
found all the edges within the image, we need to identify what we call
“strong points.” Strong points are defined as points in the middle of a vein
with “well-defined walls” and fit other criteria as described below. The
program will filter out points that are not inside two walls or are too close

VEIN ROUTE TRACING 5

Figure 4. The matrix on the left represents what an inten-
sity map might look like after the Canny Edge Detecter has
designated all of the points as high (H), medium (M), or low
(L). The matrix on the right represents the final output of
the Canny Edge Detector on the left matrix. All of the edges
become 1 and everything else is 0.

to the vein walls. We begin by testing every point that has not already been
identified as a wall by CED.

We are interested in finding the distance between the point and the CED
identified edges surrounding it. To find this distance as a function of angle
we use Bresenham’s Line Algorithm (BLA) [2, 6] to project rays out from the
point in question to the nearest edge point at all angles, as seen in figure 5.
We compile these distances and angles into figure 6. We apply the Gaussian
normal distribution to this graph as a smoothing filter to help extract the
local minima, which improves our accuracy by reducing the influence of
noise on the sometimes jagged sides of the veins. The local minima indicate
the distances to the nearest edges. If there are one or no local minima, we
discard the point in question and move on to the next point. If there are two
local minima, we use those distances as the distances to the nearest walls.
If there are three local minima, x1, x2, and x3, then we check the difference
between x1 and x2. If that difference is smaller than a certain threshold, we
discard x2 and use x1 and x3 as the two nearest edges.

An example of this output, after smoothing with the Gaussian normal
distribution filter, can be seen in figure 7, which shows us the distance from
the selected point to its the nearest edges detected by CED as a function of
angle. The minima of this plot tell us the distance to the nearest edge. In
this example the walls are at approximately 1 and 4 radians, and about 12
and 8 pixels away, respectively.

In order to reduce the effect of irregularly shaped edges, we average the
distance to the nearest edge with the distance to the edge pixels on either
side along the same wall. If the difference in the magnitudes of these averages
is less than or equal to 3 pixels, then the point is likely halfway between two
walls: in the middle of a vein. If the difference is greater than 3 pixels, then
the point is rejected.

6 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

Figure 5. To find the distance of a point to its nearst edges,
rays are sent out at every angle from that point. A sample
graph to represent that can be seen in figure 6.

Figure 6. This figure shows the distance to the nearest edge
from the test point at all angles. The x-axis is the angle in
radians and the y-axis is the distance away from the test
point in pixels.

Next, we test the quality of the walls surrounding the point. We start
with the direction to the nearest wall, then add and subtract 45◦ to that
direction. All of the points on that edge that fall within that 90◦ range are fit
to a best fit line. We then find the standard deviation of the points from the
best fit line. This procedure is repeated 180◦ away, on the other side of the

VEIN ROUTE TRACING 7

Figure 7. Gaussian Filter applied to figure 6. The x-axis is
the angle in radians and the y-axis is the distance away from
the test point in pixels.

vein, to make a best fit line on the other vein wall, shown in figure 8. If the
sum of the standard deviations is small, less than or equal to 0.8, then the
angle and width we measured will be accurate and we will consider the point
to be a strong point. If the sum of the standard deviations is larger than 0.8,
measurements made on this point may be unreliable, so we will discard the
point. This has the effect of filtering out points surrounded by irregularly
shaped sides. Irregular sides are often an indicator of over-identified edges
that may not be vein walls.

2.5. Characterize Strong Points. For every strong point we identify, we
then determine the characteristics of that point: position, vein width, vein
direction angle, and depth. The position is the (i, j) coordinate of the pixel.
The width and angle are found from figure 7. We determine the width of the
vein to be the sum of the distances to the two nearest edges, as demonstrated
in figure 9, 20 pixels wide according to the example illustrated in figure 7.
The angle, θ, is calculated to be the average of the angles to the two nearest
side walls, about 2.5 radians in figure 7. The angle is determined this way
should always point down the length of the vein. To find the depth of each
strong point, we look at the intensity of that point along with its eight
nearest neighbors. We first compare the intensity of each neighbor to the
strong point. If the difference in intensity is smaller than some threshold,
then we count that point, if not it is discarded. By averaging the intensity

8 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

Figure 8. Example of checking standard deviation for a
strong point. Edges on either side of test point are fit to
a line of best fit, then the standard deviation between the
edge points and that best fit is found.

of all of the good points around the strong point, as well as the strong point
itself, we are able to find a value for the “depth” of the vein at that point.

Figure 9. Schematic demonstrating the width and angle of
each test point. x1 and x2 are the distances to the two nearest
edges. The differences in the magnitudes of these distances
will tell us how close the test point is to the center of a vein.
θ is the average of the angles of x1 and x2.

3. Results and Discussion

3.1. Intensity Map. When we first examined the intensity map and com-
pared it to the original image, we had to choose which color channel would

VEIN ROUTE TRACING 9

best help us outline the veins. The image itself is a combination of reds,
therefore the red color channel did not bring out enough detail. The blue
color channel was very shallow and when the Canny Edge Detection algo-
rithm was run, it had over-identified edges. The green color channel gave a
good balance of contrast, so we chose to continue working with green. There
was some discussion of how much the occasional glare spots in the image
may affect our results. We used cropped, de-glared images, but as you can
see in figure 10, the glare in our image created a peak that may alter the re-
sults of the CED’s thresholds. After running CED it seemed that the initial
filtering on the image took care of most of those issues.

Figure 10. A side view from the lower end of the intensity
map of the test image from figure 2 (lower right corner). Note
the high peak associated with a glare spot on the orginal
image.

3.2. Identifying Edges. Figure 11 is the final output of the CED overlaid
on the original intensity map. The Canny Edge Detection did have a low
error rate, but it still detected too many edges around one of the glare spots
in the image at about (50,15) in figure 11.

3.3. Build List of Strong Points Within Veins. Figure 12 shows our
output of strong points as determined by this subroutine. The grey stars are
the edges determined by the Canny Edge Detector and the black circles are
the points identified as strong points. We had several issues when initially
debugging this program and then polishing it in order to try to complete

10 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

Figure 11. Intensity map of veins with results of Canny
edge detector overlaid as dark spots

as much of the project as possible within our time constraint. Initially, the
program only detected a few strong points along the thin vein at the top
left hand side of the image. Part of our polishing was to adjust thresholds
accordingly to try to get the result we were looking for.

Figure 13 highlights five regions of our image where our code had issues.
Region A shows an example of anomalous disconnects that needs to be
explored and resolved. It is possible that the bend in the vein caused the
standard deviation of the walls around the middle points to be too high, so
we are getting this random output. Region B came about where two edges
intersect. In this case, the cornering occurs when two veins cross each other.
Ideally, region B should be a line. To establish the line, depth must be taken
into account, not just the edges as the current algorithm does. Region C
should not have much marking because it is not part of any vein. To remove
region C, the algorithm needs to take into account concavity. Veins are
concave up whereas region C is concave down. By eliminating regions with
downward concavity, regions such as C will not be marked. Region D arose
when the same edge is identified as the sections of angles x1, x2 when we
are checking for the standard deviations of the walls surrounding the point.
No solution has been implemented to resolve this error. Region E occurred
when the edge walls are not well-formed. One option is to remove strong
points with few or no neighbors, which would remove most of region E.

VEIN ROUTE TRACING 11

Figure 12. Image of Canny Edge Detection results as small
light stars and the identifed strong points as darker circles.

Figure 13. These figures highlight some of the issues we
noticed from our final output to the right and the corre-
sponding regions in the original image on the left. Region
A: unexpectedly sparse strong points. Region B: cornering
issues. Region C: is not part of a vein. Region D: same wall
identified twice. Region E: poorly formed edges.

We decided to reduce the number of strong points to a more manageable
level by using a function in MATLAB known as “bwmorph” which thinned
the strong points wherever they were clustered. The result of this process
can be seen in figure 14.

3.4. Characterize Strong Points. We successfully characterized the strong
points. All of the strong points were put into a list along with the following

12 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

Figure 14. Final output after thinning the strong points.

characteristics: position, width, angle, and depth. We did not have any
issues compiling this list of characteristics.

4. Conclusion

Our group chose to develop a program that would automatically pick out
and draw the vein structure of an image of a placenta. We did not reach
this goal, even just with our test image, because we simply ran out of time
to complete the work before the end of the semester. We did get a positive
initial set of strong points that we would like to further narrow down to only
the strong points we want to use. Once establishing a complete list of strong
points, we believe we would be capable of finishing the work to connect the
strong points to recreate the veins. Based on what we have accomplished
so far we believe this method shows promise to reaching a more connected
vein network than others [1].

5. Future Work

The last part of the project, which we were unable to get to, is to connect
the strong points together to generate the vein network. This section will
summarize our intended path to completing the task as well as other means
to improve the overall method.

After identifying the strong points, we began working on an algorithm
that would connect them. This algorithm analyzes one strong point at a
time, using the characteristic angle of the strong point, it would travel along
the direction of that angle until it found another strong point or an edge.
The algorithm we decided to use to travel down the angular direction from
the point is Bresenham’s Line Algorithm. We chose this algorithm because

VEIN ROUTE TRACING 13

of its simplicity in determining a line of pixels given a direction and starting
point.

The algorithm would travel from one strong point to another. If the
algorithm intercepts an edge before finding a strong point, then we will
simply move on to the next strong point. To make sure to cover our tracks,
we want to mark the places we will travel by placing dashed lines on the
edge graph. This way, we can see the point we started from, the path we
took, if we hit any other strong points, and what happened if we hit these
points. We had high hopes for this technique, allowing us to perform precise
error checking on our code, but we ran into some difficulties when coding
the algorithm.

One trouble was incorporating BLA into our code. BLA requires some
inputs which interfere with our inputs. Fitting BLA into our iterative code
interfered with some of the variables we had created. Also, we are having
trouble determining how to iterate the procedure over many strong points.
We figured out how to check one point, but have not yet expanded the
program to check all strong points.

Once we identify additional strong points along the angular direction of
the strong point in question, we need to determine if there is a correlation
between these points and the original one. If so, we would connect those
points as being part of the same vein and eventually connect all points in
the same vein.

Our test image did not include any veins with forks in them. Future
effort would be required to adjust our program to find the vein structure
when there are obstacles such as splitting veins.

We would like to increase the efficiency of our program. At the moment
we search through every point to find the distance to the nearest edge as a
function of angle. Our algorithm spends about 95% of its time on this part
of the process, making it impractical for full sized images. Afterwards, the
two side walls must be identified by finding local minima and choosing the
correct minima. This step is difficult to do accurately, as seen in figure 7
where the minima are broad, making it hard to pinpoint a specific direction.
It is also difficult when more than two minima are identified, as discussed
above. We would ideally like to develop an alternate algorithm to identify
the strong points without the rays and local minima.

One alternative method we wish to attempt to implement we call the
“Echo Method.” In this method, we first select a section of the edge of a
vein, labeled AB in figure 15. This section is projected in the direction of
most negative gradient which should be directly across the vein. When this
projection reaches the far wall of the vein, we will mark the new section
of vein CD. CD is then projected back across the vein according to its
gradient direction, marking its projection on the original wall as EF . On
the second wall, where CD is located, we label G as the point that projects
onto A on the original wall. We will then find the midline between AE and
GD, which we will label UV . UV should be a line down the center of the

14 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

Figure 15. Left: Points A and B are selected on an edge.
The line segment AB is projected to the other side of the vein
in the direction of largest negative gradient, which determines
segment CD. Center: The projection procedure is repeated
on segment CD to generate points E and F. Point G is also
generated as the point on CD that projected back onto point
A. Right: The midpoints of segments ED and AG are used
to find segment UV , which should lie down the center of th
vein.

vein. This method would allow us to run tests on the points identified as
edges by Canny Edge Detection, rather than all 700,000+ pixels in each full
sized image.

We have successfully identified small veins, as shown in figure 14, which
was one of the more important features missing from previous research [1].
This means our technique may be successful in identifying the smaller struc-
ture that others have missed.

6. Acknowledgements

We would like to thank Professor Chang, Doctor Carolyn Salafia, and
Matthew Aggleton, Ph.D. for their invaluable contributions. We also appre-
ciate the opportunity to borrow code from various others [4, 7].

References

[1] N Almoussa, B Dutra, B Lampe, P Getreuer, T Wittman, C Salafia, and L Vese.
Automated vasculature extraction from placenta images. UCLA Summer 2009 REU
Report, 2009.

[2] Jack E. Bresenham. Algorithm for computer control of a digital plotter. IBM Systems
Journal, 4:25–30, 1965.

[3] Bill Green. Canny edge detection tutorial. http://www.pages.drexel.edu/~weg22/

can_tut.html, 2002.
[4] MathWorks. R2010b mathworks documentation. http://www.mathworks.com/help/,

Feb 2011.
[5] R. Meth and R. Chellappa. Stability and sensitivity of topographic features for syn-

thetic aperture radar target characterization. J. Opt. Soc. Am. A, 16:396–413, 1999.
[6] (Various). Bresenham’s line algorithm. http://en.wikipedia.org/wiki/Bresenham%

27s_line_algorithm, 2011.
[7] Zhiqiang Zhang. List, queue, stack. Matlab Central, Oct 2010.

VEIN ROUTE TRACING 15

Appendix A. MATLAB Code

A.1. clusterLine.m.

function [T,cluster] = clusterLine(E,sigma,stdThresh)

% The Function: clusterLine examines the edge map at each point.

%If the point is close enough to the closest walls, has enough

%points to build some walls modeled after the actual walls, and

%has a small standard deviation, this point will be marked as 1

%in cluster. Otherwise, it will be disregarded.

% Input: E - The edge map of the topographical map of the

%image

% sigma - the standard deviation of the gaussian

%smoothing

% stdThresh - the threshold of the sum of the standard

%devation allowed.

% Output: clustered points(C) and a line (T) formed from the

%cluster points

[m,n] = size(E);

cluster = zeros(m,n);

%x’s are the angles and r’s are the distances

for i=2:m-1

%For debugging:

%i

for j=2:n-1

%Only taking into account points that are not edges

if ~E(i,j) == 1

% Getting all the x’s and r’s from point (i,j)

[detailarrPlot,arrPlot] = MM_GetRayEnds(double(E),i,j);

% Making sure the matrix has enough sample of points

[length,l] = size(arrPlot);

if length < 4

break;

end

%Doing the smoothing of arrPlot and getting the local minimum x’s

S = MM_Smooth(arrPlot,sigma);

[x1,x2,x3,found] = MM_GetMinWDeriv(S, sigma);

16 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

if found

%Getting the r’s corresponding to the x’s previously found

z = arrPlot(:,1) == x1;

r1 = arrPlot(z,2);

z = arrPlot(:,1) == x2;

r2 = arrPlot(z,2);

% Switching between x2 and x3 if x1 is too close to x2.

% This is used to improve the likelyhood that x1 and x2

% represent different edge walls.

if ~(x3 == x2)

if (abs(x2-x1) < min([pi/3*(1/r1+1) pi/3*(1/r2+1)]))

x2 = x3;

z = arrPlot(:,1) == x3;

r2 = arrPlot(z,2);

end

end

%Average distance from its neighbors

d1 = MM_AvgDist(arrPlot,x1,pi/3*(1/r1+1));

d2 = MM_AvgDist(arrPlot,x2,pi/3*(1/r2+1));

%Check if they are good points:

%Check if the point is in the middle of two edge

%walls and if the edge walls have enough point to sample.

if (abs(d1-d2) <= 3 ...

&& MM_CheckIfEnoughPoints(detailarrPlot,x1,pi/3*(1/d1+1)) ...

&& MM_CheckIfEnoughPoints(detailarrPlot,x2,pi/3*(1/d2+1)))

%Take a sample of x1’s wall section.

aPlot = MM_GetHorizLine(arrPlot,x1,pi/3*(1/d1+1));

[length,l] = size(aPlot);

% Check if there is emough points in the sample

if length >= 3

%Calculate the standard deviations from the built

%wall to the true wall

[std1,l,l] = MM_stdofLine(aPlot);

%Take a sample of x2’s wall section.

aPlot = MM_GetHorizLine(arrPlot,x2,pi/3*(1/d2+1));

[length,l] = size(aPlot);

% Check if there is enough points in the sample

VEIN ROUTE TRACING 17

if length >= 3

%Calculate the standard deviations from the built

%wall to the true wall

[std2,l,l] = MM_stdofLine(aPlot);

%If they are good points, meaning they have small standard

%deviations, then mark the location with the value of 1.

if (std1 + std2) <= stdThresh

cluster(i,j)=1;

end

end

end

end

end

end

end

end

%Getting the thin line from the cluster points

T = bwmorph(cluster,’thin’,1);

end

A.2. MM GetRayEnds.m.

function [detailarrPlot,arrPlot] = MM_GetRayEnds(E, x0, y0)

% The Function: MM_GetRayEnds takes in a matrix E and shoots out rays

%from (x0,y0) in different directions (using Bresenham’s line algorithm)

%recording when it hits an element of matrix E of value 1, which we will

%call a "wall". Inputs: The edge map(E), coordinates of a point(x0,y0)

% Outputs: arrPlot is a n by 2 matrix containing in

%the first column the angles where a "wall" was hit and the

%corresponding distances in the second column.

%detailarrPlot is the matrix arrPlot with two extra columns containing

%the coordinates of the "wall points". The x coordinate is placed its

%third column and the corresponding y coordinate in its last column.

[m,n] = size(E);

list = CList();

% Set direction. (x,y).

dir = [1 0];

% EN

18 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

while dir(2)/dir(1) < 1

for x = x0 + 1 : m

% Bias towards larger value.

y = round(dir(2)*(x-x0)/dir(1))+y0;

%if out of bounds.

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

break;

%if found wedged between to marked pixels.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x-1,y) == 1 && E(x,y-1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

end

% Update direction.

dir = [2*(x-x0) 2*(y-y0)+1];

end

% Switch representation. (y,x) instead.

dir = [dir(2) dir(1)];

% NE

while dir(2)/dir(1) > 0

for y = y0 + 1 : n

% Bias towards smaller value.

x = fix(dir(2)*(y-y0)/dir(1))+x0;

%if out of bounds.

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

break;

%if found wedged between to marked pixels.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x-1,y) == 1 && E(x,y-1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

VEIN ROUTE TRACING 19

end

% Update direction.

dir = [2*(y-y0)+1 2*(x-x0)];

end

% Moves to next direction to prevent repeating same point

if (x == x0)

dir = [2*(y-y0) 2*(x-x0)-1];

end

% NW

while dir(2)/dir(1) > -1

for y = y0 + 1 : n

% Bias towards larger value.

x = round(dir(2)*(y-y0)/dir(1))+x0;

%if out of bounds.

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

break;

%if found wedged between to marked pixels.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x+1,y) == 1 && E(x,y-1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

end

% Update direction.

dir = [2*(y-y0) 2*(x-x0)-1];

end

% Switch representation. (x,y) instead.

dir = [dir(2) dir(1)];

% WN

while dir(2)/dir(1) < 0

for x = x0 - 1 : -1 : 1

% Bias towards smaller value.

y = fix(dir(2)/dir(1)*(x-x0))+y0;

%if out of bounds.

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

20 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

break;

%if found wedged between to marked pixels.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x+1,y) == 1 && E(x,y-1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

end

% Update direction.

dir = [2*(x-x0)-1 2*(y-y0)];

end

% Moves to next direction to prevent repeating same point

if (y == y0)

dir = [2*(x-x0) 2*(y-y0)-1];

end

% WS

while dir(2)/dir(1) < 1

for x = x0 - 1 : -1 : 1

% Bias towards larger value.

y = round(dir(2)*(x-x0)/dir(1))+y0;

%if out of bounds.

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

break;

%if found wedged between to marked pixels.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x+1,y) == 1 && E(x,y+1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

end

% Update direction.

dir = [2*(x-x0) 2*(y-y0)-1];

end

VEIN ROUTE TRACING 21

% Switch representation. (y,x) instead.

dir = [dir(2) dir(1)];

% SW

while dir(2)/dir(1) > 0

for y = y0 - 1 : -1 : 1

% Bias towards smaller value.

x = fix(dir(2)*(y-y0)/dir(1))+x0;

%if out of bounds.

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

break;

%if found wedged between to marked pixels.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x+1,y) == 1 && E(x,y+1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

end

% Update direction.

dir = [2*(y-y0)-1 2*(x-x0)];

end

% Moves to next direction to prevent repeating same point

if (x == x0)

dir = [2*(y-y0) 2*(x-x0)+1];

end

% SE

while dir(2)/dir(1) > -1

for y = y0 - 1 : -1 : 1

% Bias towards larger value.

x = round(dir(2)*(y-y0)/dir(1))+x0;

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

break;

%if out of bounds.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x-1,y) == 1 && E(x,y+1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

22 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

end

% Update direction.

dir = [2*(y-y0) 2*(x-x0)+1];

end

% Switch representation. (x,y) instead.

dir = [dir(2) dir(1)];

% ES

while dir(2)/dir(1) < 0

for x = x0 + 1 : m

% Bias towards smaller value.

y = fix(dir(2)*(x-x0)/dir(1))+y0;

%if out of bounds.

if ~(1 <= x && x <= m && 1 <= y && y <= n)

list.pushtorear([GetPolarAngle(x-x0,y-y0) Inf 0 0]);

break;

%if out of bounds.

elseif ~(sign(dir(2)/dir(1)) == 0) && E(x-1,y) == 1 && E(x,y+1) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0)...

norm([x-x0 y-y0])-1/sqrt(2) x y]);

break;

% if found at location.

elseif E(x,y) == 1

list.pushtorear([GetPolarAngle(x-x0,y-y0) norm([x-x0 y-y0]) x y]);

break;

end

end

% Update direction.

dir = [2*(x-x0)+1 2*(y-y0)];

end

elem = list.front();

temp = list.back();

% Remove the last element if it’s the same as the first element.

if temp{1}(1:2) == elem(1:2)

list.poprear();

end

VEIN ROUTE TRACING 23

len = list.size();

detailarrPlot = zeros(len,4);

% Copy the list into detailarrPlot

for i = 1 : len

elem = list.front();

detailarrPlot(i,:) = elem;

list.popfront();

end

% Copy only in-bound angle and distance from detailarrPlot to arrPlot

idx = ~(detailarrPlot(:,2) == Inf);

arrPlot = detailarrPlot(idx,1:2);

end

A.3. GetPolarAngle.m.

function [angle] = GetPolarAngle(x,y)

% The Function: GetPolarAngle obtains the angle formed by the x axis

%and the vector [x,y].

% Inputs: The coordinates of the point(x,y) that is being analyzed

% Output: The "polar angle" as described above

if sign(x) == 1

%If the point is in the first quadrant

if sign(y) == 1

angle = atan(y/x);

%If the point is in the fourth quadrant

elseif sign(y) == -1

angle = atan(y/x)+2*pi;

%If the point is in the poisitive x-axis

else %that is, if y == 0

angle = 0;

end

elseif sign(x) == -1

%If the point is in the second or third quadrant

angle = atan(y/x) + pi;

else % that is if x == 0

%If the point is in the positive y-axis

if sign(y) == 1

24 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

angle = pi/2;

%If the point is in the negative y-axis

elseif sign(y) == -1

angle = 3*pi/2;

%If the point is at the origin

else %y == 0 ERROR

angle = 0;

end

end

end

A.4. MM Smooth.m.

function [smooth] = MM_Smooth(arrPlot,s)

% The Function: MM_Smooth uses the arrPlot, the n by 2 matrix

%containing angles and distances, as a list of coordinate points

%to make a "function." Using the gaussian filtering and the

%sigma provided, it proceeds to use Gaussian Filtering to

%smooth out the "function."

%Inputs: An n by 2 matrix containing angles and distances

%(arrPlot), and sigma

% Outputs: A "smooth" arrPlot

[m,l]=size(arrPlot);

smooth = zeros(m,1);

step = floor(m/2);

new_m = 2*floor(m/2)+1;

% Center the point

A = [arrPlot(m+1-step:m,:); arrPlot(1:1+step,:)];

A(:,1) = [A(1:step,1) - 2*pi*ones(step,1) ; A(step+1 : new_m,1)]

- arrPlot(1,1)*ones(new_m,1);

% Create gaussian filtering

gau = exp(-(A(:,1).*A(:,1))/(2*s^2))/(2*pi*s^2);

gau = gau/(norm(gau));

% Apply Filter

smooth(1) = gau’*A(:,2);

VEIN ROUTE TRACING 25

for i = 2:m

% Center the point

A = [A(2:new_m,:) ; A(1,:)];

A(m,1) = A(new_m, 1) + (2*pi);

B = A(:,1)-arrPlot(i,1)*ones(new_m,1);

% Create gaussian filtering

gau = exp(-(B.*B)/(2*s^2))/(2*pi*s^2);

gau = gau/(norm(gau));

% Apply Filter

smooth(i) = gau’*A(:,2);

%Debugging: plot(1:new_m,A(:,1));

end

smooth = [arrPlot(:,1) smooth];

end

A.5. MM GetMinWDeriv.m.

% It’s best that X be smoothed.

function [x1,x2,x3,found] = MM_GetMinWDeriv(X, sigma)

% The Function: MM_GetMinWDeriv goes inside arrPlot and finds the

%smallest distances. Note that all the distances are located in the

%second column of arrPlot.

% Input: A matrix and a sigma

% Output: The three angles corresponding to the three smallest

%distances from the point to the wall.

found = true;

% Debuggin elements:

% D = MM_GetGaussWeightedDerivative(X,sigma);

% D = [D(:,1) abs(D(:,2))];

% M = min([[D(size(X,1),2);D(1:size(X,1)-1,2)]-D(:,2)...

[D(2:size(X,1),2);D(1,2)]-D(:,2)],[],2);

% dX = x_(i+1) - x_i

dX = [X(2:size(X,1),1) ; X(1,1)+2*pi] - X(:,1);

% dY = f(x_(i+1)) - f(x_i)

dY = [X(2:size(X,1),2) ; X(1,2)] - X(:,2);

26 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

% Derivative

M = dY./dX;

% min(f(x_(i+1)) - f(x_i),f(x_(i-1)) - f(x_i))

N = min([[X(size(X,1),2);X(1:size(X,1)-1,2)]-X(:,2)...

[X(2:size(X,1),2);X(1,2)]-X(:,2)],[],2);

% Get index of f’(x_i)>=0 && f(x_(i-1)) <= f(x_i) <= f(x_(i+1)),

%hence the index that are local min.

idx = find((M >= 0).*(N >= 0));

if isempty(idx)

x1 = 0;

x2 = 0;

x3 = 0;

found = false;

else

% Get first local min

[l,id] = min(N(idx));

x1 = X(idx(id),1);

% Mark that location to not pick the same local min.

N(idx(id),1) = Inf;

if size(idx,1) > 1

% Get second local min

[l,id] = min(N(idx));

x2 = X(idx(id),1);

% Mark that location to not pick the same local min.

N(idx(id),1) = Inf;

if size(idx,1) > 2

% Get second local min

[l,id] = min(N(idx));

x3 = X(idx(id),1);

else

x3 = x2;

end

else

% x2 is guessed to be pi radians away from x1. The result is

% unreliable.

x2 = x1 - pi;

if x2 < 0

x2 = x2 + 2*pi;

end

VEIN ROUTE TRACING 27

x3 = x2;

found = false;

end

end

end

A.6. MM AvgDist.m.

function [avg] = MM_AvgDist(arrPlot, angle, intervalSize)

% The Function: MM_AvgDist finds the average distance from the point

%to the section of the wall where an angles is pointing.

% Input: The n by 2 matrix containing angles and distances (arrPlot), the

%direction angle, and an angle of partition (intervalSize)

% Output: The average distance.

%Getting a portion of arrPlot to work with

I = MM_GetInterval(arrPlot,angle,intervalSize);

[m,l] = size(I);

%Finding the average distance for that portion of arrPlot

if m == 0

avg = -1;

else

avg = sum(I(:,2))/m;

end

end

A.7. MM CheckIfEnoughPoints.m.

function [b] = MM_CheckIfEnoughPoints(detailarrPlot, angle,...

intervalSize)

% The Function: MM_CheckIfEnoughPoints checks if there are

%enough points to work with.

% Input: detailarrPlot is the arrPlot with two extra columns

%telling the end points of the direction the angle is going,

%the direction angle from where we start, and angle of

%partition (intervalSize)

% Output: Whether (’true’) or not (’false’) there are enough

%points to construct the line

28 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

[m,l] = size(detailarrPlot);

idx = find(detailarrPlot(:,1) == angle);

idx = idx(1);

b = true;

stop = false;

% Get the points having less radians than angle but still in the interval

% of angle.

if (idx > 1)

for i = idx - 1 : -1 : 1

if (detailarrPlot(idx,1)-detailarrPlot(i,1) > intervalSize/2)

stop = true;

break;

elseif detailarrPlot(i,2) == Inf

b = false;

return;

end

end

end

% Rap around

if ~stop

for i = m : -1 : idx + 1

if (detailarrPlot(idx,1)-detailarrPlot(i,1) + 2*pi > intervalSize/2)

break;

elseif detailarrPlot(i,2) == Inf

b = false;

return;

end

end

end

stop = false;

% Get the points having more radians than angle but still in the interval

% of angle.

if (idx < m)

for i = idx + 1 : m

if (detailarrPlot(i,1)-detailarrPlot(idx,1) > intervalSize/2)

stop = true;

break;

elseif detailarrPlot(i,2) == Inf

b = false;

VEIN ROUTE TRACING 29

return;

end

end

end

% Rap around

if ~stop

for i = 1 : idx - 1

if (detailarrPlot(i,1)+2*pi-detailarrPlot(idx,1) > intervalSize/2)

break;

elseif detailarrPlot(i,2) == Inf

b = false;

return;

end

end

end

end

A.8. MM GetHorizLine.m.

function [aPlot] = MM_GetHorizLine(arrPlot, angle,...

intervalSize)

% The Function: MM_GetHorizLine grabs the arrPlot information

%to build a wall. We pick an interval size from that point’s

%angle and highlight a part of the actual wall to compare.

% Input: The n by 2 matrix containing angles and distances

%(arrPlot), the angle you are working with, and an an angle

%of partition (intervalSize)

% Output: A horizontal line

% Get Interval centered around angle of size intervalSize

I = MM_GetInterval(arrPlot,angle,intervalSize);

[m,l] = size(I);

% Shift the angles so centered angle becomes 0.

I(:,1) = I(:,1)-angle*ones(m,1);

% Convert to Cartesian

aPlot = [I(:,2).*sin(I(:,1)) I(:,2).*cos(I(:,1))];

% Debugging:

% figure, plot(aPlot(:,1),aPlot(:,2));

30 JENNIFER GIDDINGS, NEN HUYNH, ZAC SCHOENROCK, MARILYN VAZQUEZ

end

A.9. MM GetInterval.m.

function [A] = MM_GetInterval(M, angle, intervalSize)

% The Function: MM_GetInterval goes inside arrPlot, takes the

%angle of interest, and goes back a little more that

%intervalSize/2 radians backward and foward. Then, it grabs

%angles withing that interval from the arrPlot, puts the angle

%of interest at the center, and subtracts its value from all the

%angles (transposing).

% Input: The direction angle, and an angle of partition (intervalSize)

% Output: aPlot before centering transposing.

[m,l] = size(M);

[l,index] = min(abs(M(:,1) - angle*ones(m,1)));

% Get Left

i = index;

while (i > 1)

if M(i-1,1) < angle - intervalSize / 2

break;

end

i = i-1;

end

A = M(i:index,:);

if (i == 1)

for i = m : -1 : index + 1

if M(i-1,1) < angle + 2*pi - intervalSize / 2

break;

end

end

A = [[M(i:m,1)-2*pi*ones(m-i+1,1) M(i:m,2)]; A];

end

% Get Right

i = index;

while (i < m)

if M(i+1,1) > angle + intervalSize / 2

break;

end

VEIN ROUTE TRACING 31

i = i + 1;

end

A = [A ; M(index+1:i,:)];

if (i == m)

for i = 1 : 1 : index - 1

if M(i+1,1) > angle - 2*pi + intervalSize / 2

break;

end

end

A = [A ; [M(1:i,1)+2*pi*ones(i,1) M(1:i,2)]];

end

end

A.10. MM stdofLine.m.

function [std,m,b] = MM_stdofLine(arrPlot)

% The Function: MM_stdofLine gives you a value (standard deviation)

%of how good or bad a given line is compared to a "standard line"

%made from arrPlot using polyfit.

% Input: The n by 2 matrix containing angles and distances (arrPlot)

% Output: The standard deviation, the first element in C, and the

%second element in C. C is the best fit line from

%MM_GetHorizontalLine.

[n,l] = size(arrPlot);

%Fitting a line through the points in arrPlot

C = polyfit(arrPlot(:,1),arrPlot(:,2),1);

%The first and last value of this standard line

m = C(1);

b = C(2);

%Getting the standard deviation

std = sqrt(sum(((m*arrPlot(:,1)+b)-arrPlot(:,2)).^2)/n);

end

Department of Mathematics and Statistics, California State University,
Long Beach, 1250 Bellflower Blvd., Long Beach, CA 90840-1001

E-mail address: jmeyersg@gmail.com, nvhuynh16@gmail.com, zacschoenrock@hotmail.com,

vazquez.marilyn.y@gmail.com

