
MAPPING PLACENTAL VESSEL NETWORKS USING TRIANGULAR MESH
TOPOLOGY

TRINH QUOC HUNG
APPLIED MATHEMATICS

CALIFORNIA STATE UNIVERSITY, LONG BEACH
HUNG135790@YAHOO.COM,

NANCY CHE MAHAN
APPLIED MATHEMATICS

CALIFORNIA STATE UNIVERSITY, LONG BEACH
NANCYCHE2@YAHOO.COM,

DAVID J HARR
APPLIED MATHEMATICS

CALIFORNIA STATE UNIVERSITY, LONG BEACH
DJHARR@GMAIL.COM

Abstract. By analyzing the properties of the placenta, it is possible to make
accurate predictions about the progression of certain conditions through the life
of the child. One of these properties is the blood vessel network of the placenta,
which is responsible for providing the child with oxygen and nutrients from the
mother. We propose a new technique for automatically extracting the placental
blood vessel network data from a 3-dimensional model of the placenta using
inherent curvature of the surface of the placenta. By analyzing the curvature, we
are able to identify features that likely correspond to blood vessels standing
above the surface of the placenta. We discuss the mathematics underlying the
technique, which makes use of concepts from graph theory, differential
geometry, computer-aided geometric design, and computer graphics. We also
provide details of a sample implementation of the algorithm and discuss the
results, using some sample models.

1. Introduction

There have been many studies indicating a strong correlation between the
shape, weight, and efficiency of the placenta and the health of the baby. This
correlation appears to hold long past the infancy of the child. In fact, the claim
has been made that the characteristics of the placenta is the single most
important predictive factor in the health of the baby. In light of this, many
people are analyzing placental types in order to be able to better use them for
advance notice of possible health issues for a child. [1]

Date: May 19, 2011.

1

One of the characteristics of the placenta that is used to determine its
“efficiency” is the network of veins and arteries that supply blood to the child in
the womb. There have been various attempts to map this vessel network using
automatic techniques working from images, but to date, no one has come up
with a method that can reliably extract the vessel network of an arbitrary
placenta without human intervention. [2]

This article presents a technique for extracting the vessel network of a placenta.
This technique uses the topology of the 3-dimensional surface created from the
placenta, which results in a triangle mesh that is a close approximation of the
actual placenta. By analyzing the surface, we are able to use the topology of the
mesh, primarily the curvature, to identify probable locations for blood vessels
which protrude above the surface of the placenta. Then, by eliminating areas
with non-matching curvature parameters, we are able to reconstruct the major
features of the original vessel network.

2. Mathematical Theory

2.1. Curvature. Consider a 2-dimensional surface embedded in 3-space. Now,
for a given point p on that surface, there are an infinite number of curves
passing through that point in the surface. Each curve has an associated
curvature associated with it, where the curvature describes how much the curve
deviates from being a straight line at the point p. If we choose a small enough
neighborhood for a curve around p, then the curve can be made to approximate
a circle. Then, the curvature κ of the curve at p is defined as the reciprocal of
the radius of the circle which most closely approximates the curve near p. In
other words, for a curve C through p,

κC =
1
R
,

with R being the radius of the circle most closely approximating C . Clearly, as a
curve approaches a straight line, the value of R approaches ∞, and the value of
κ approaches 0. Clearly, at p, there will be a curve with a maximum curvature
and a curve with a minimum curvature. By convention, these are known as κ1

and κ2 to refer to maximum and minimum curvature, respectively. Together, κ1

and κ2 are known as the principal curvatures. The direction of the principal
curvatures are at right angles to each other, and the sign of the the curvatures
are arbitrary, but commonly, a positive curvature indicates a convex surface.
The mean curvature, M , is defined as the average of the principal curvatures,

M = 1
2
(κ1+κ2).

2

Figure 1: Principal Curvatures of a Surface, κ1 and κ2.

The Gaussian curvature, K, is defined as the product of the principal curvatures,

K = κ1κ2.

2.2. Surface Fitting. In order to find the curvature at a specific point on the
triangular mesh, we need to create a parametric surface that smoothly
interpolates the mesh near the point of interest. This is done interpolating a
series of vertices near the point of interest to obtain a biquadratic Bézier
Surface, which consists of a rectangular mesh with 9 control points. The surface
is defined using the equation

X(u,v)=
2∑
i=0

2∑
j=0

bi,jB2
i (u)B

2
j (v).

where u and v are parameterizations of the point on the surface, bij are the
Bézier control points, and B2

i are the Bernstein polynomials. [3]

After calculating the Bézier surface, we can calculate the curvature using the
derivatives of the Bézier formula. The procedure we use is based upon the
method described in [4].

3

3. Implementation

3.1. STL File Formats. The placental models are provided in a format known as
STL for “stereo lithography.” These are created by taking the placenta and
slicing it into very small strips and digitizing the resulting pieces. By the nature
of the file, it contains a large number of triangle records, with each triangle
being completely self-contained. In addition, the triangle records can occur in
any arbitrary order, making it impossible to discern any topological information
from the mesh. In order to allow us to process the mesh and attempt to extract
information such as the curvature, it was necessary to transform the data,
creating relations among the various elements.

To begin, we read in all the triangle records. Each record consists of three
vertices with three floating point coordinates corresponding to the x, y and z
coordinates, respectively. In addition, there is a 3-dimensional vector that gives
the normal to the triangular face. The vertices are specified in a
counterclockwise order. Since each triangle is a standalone data chunk, there is
a large amount of data duplication in the vertices. On average, we found that
each vertex was repeated six times. In order to facilitate mesh processing, we
eliminated the duplicate vertices, and converted each triangle to use indices into
a vertex list instead of specifying the coordinates directly. Then we eliminate
the duplicate vertices in the vertex list. Below is the c++ code to perform these
operations.

// read in the actual triangle data
for(int i=0; i<num_triangles; ++i) {

// put the triangle data into
// temporary variable
stl_tri temp;

// read the data from the stl file and put
// it into the temporary variable
stl_file.read((char *)&temp, stl_tri_size);

// three vertex variables
v3d v1, v2, v3;

// this loads the coordinate data from
// stl triangle into the three vertex
// variables
load_verts(temp, v1, v2, v3);

// This adds the 3 vertices to the vertex
// list. We make no attempt to deal with
// duplicate vertices yet

4

vert_list.push_back(v1);
vert_list.push_back(v2);
vert_list.push_back(v3);

// store the triangle into a triangle list
// that we will use to build our index based
// facet list later.
tri_list.push_back(temp);

}

// this will sort all the vertices into lexicographical
// order, so that all duplicate vertices will occur
// in a series of adjacent entries in the array
std::sort(vert_list.begin(), vert_list.end());

// This checks the array for duplicate adjacent entries
// and moves them to the end of the array, returning a
// pointer to the beginning of the duplicates
std::vector<v3d>::iterator it = std::unique(vert_list.begin(),

vert_list.end());

// This erases the array from the point where the
// duplicate entries begin to the end of the array
// leaving us with an array containing only one
// copy of each vertex
vert_list.erase(it, vert_list.end());

3.2. Adjacency List. After creating the vertex list, we need to convert the
triangles to use entries into the vertex list instead of storing the coordinates
directly. For this purpose, we create a new data type that stores indices into the
vertex list to indicate the three vertices of the triangle. However, we still need to
keep the normal information for the face, so we will need to add that, too. In
order to create the Bézier surface, we do a nonlinear least squares fitting to a
number of vertices around the point of interest. To do this, we require the
ability to determine which vertices are connected to a given vertex by an edge.
At the same time we match the vertex coordinates to the indices in the vertex
list, we also add each edge of the triangle to an adjacency list, which, for each
vertex, keeps a record of the vertices that share an edge with any given vertex.
In additing, we need to be able to determine which triangles contain a particular
vertex, so for each vertex, we keep a list of containing triangles.

The c++ code to accomplish this is given below.

for(std::vector<stl_tri>::iterator it = tri_list.begin();
it != tri_list.end(); ++it) {

// t is the original triangle data
5

// as read from the STL file
stl_tri t = *it;
facet f;

// copy the triangle normal to
// the new facet
f.normal.x = t.norm_x;
f.normal.y = t.norm_y;
f.normal.z = t.norm_z;

// normalize it to length 1
f.normal = unit(f.normal);

// copy the vertex coordinate data to
// three temporary variables
load_verts(t, v1, v2, v3);

// this returns the index of the first
// vertex in the triangle record
f.v1 = std::distance(frist,

std::lower_bound(vert_list.begin(), vert_list.end(), v1))
;

// this returns the index of the second
// vertex in the triangle record
f.v2 = std::distance(frist,

std::lower_bound(vert_list.begin(), vert_list.end(), v2))
;

// this returns the index of the third
// vertex in the triangle record
f.v3 = std::distance(frist,

std::lower_bound(vert_list.begin(), vert_list.end(), v3))
;

// calculate the area of the triangle
f.area = norm(cross(v2-v1, v3-v1) * 0.5);

// calculate barycentric center -- this
// is where the normal emanates from
f.center = (v1+v2+v3) * (1.0f/3.0f);

// add the edges of the facet to the adjacency list
// v1->v2, v2->v3, v3->v1
boost::add_edge(f.v1, f.v2, a_list);

6

boost::add_edge(f.v2, f.v3, a_list);
boost::add_edge(f.v3, f.v1, a_list);

// this calculates the percetage of the
// triangle that each vertex occupies.
// Used to calculate the normal at
// vertex.
calc_corner_area(f);

// this adds this triangle to each
// facet list for its component vertices
add_facet_nodes(facet_list.size(), f);

// appends the facet to the triangle list
facet_list.push_back(f);

}

3.3. Convex Hull. In order to calculate the Bézier surface for the point, we need
to determine the proper control points for the mesh. This involves finding the
em minimal bounding box for the input points. We use a number of points near
the triangle of interest. We need a large enough area that the curvature can be
calculated, but not so large as to make the determination of the control points
require too much computation. Based on work done by [5], we settled on using a
set of input points corresponding to all vertices located within three edges of
the point of interest. If we label the point of interest v , then all the vertices
connected to v by a single edge, the so-called neighborhood of v is known by
the designation v∗. In the same way, all the vertices that lie within two edges of
v consist of v∗ as well as all the vertices that share an edge with the members
of v∗. This is known as v∗∗. Finally, all the vertices lying within three edges
of v consist of the members of v∗∗, as well as all the vertices lying within one
vertex of these vertices. This is known as v∗∗∗. In order to construct this set
of vertices, we first get all the vertices lying within one vertex of v , then
recursively determine the neighborhoods of v∗ and v∗∗. This results in many
duplicate members, so we have to prune the list, the same way we remove
duplicates from the vertex list. Note that since we are calculating the normal at
the center of the triangle, we start with the three vertices making up that
triangle, instead of the actual triangle centroid. Figure 2 illustrates v∗∗∗ for a
triangle.

Below is the c++ code to create v∗∗∗.

// initialize the neighborhood with the vertices
// of the triangle
v_A.push_back(f.v1);
v_A.push_back(f.v2);
v_A.push_back(f.v3);

7

Figure 2: v∗∗∗ : 3-ring neighborhood surrounding vertex v .

// calculate v*
v_star(v_A, v_star_);

// this adds all the members of v**
// to the list of data points
add_to_neighborhood(v_star_,

neighborhood);

// calculate v**
v_star(v_star_, v_star_star_);

// this adds all the members of v**
// to the list of data points

8

add_to_neighborhood(v_star_star_,
neighborhood);

// calculate v***
v_star(v_star_star_, v_star_star_star_, true);

// this adds all the members of v**
// to the list of data points
add_to_neighborhood(v_star_star_star_,

neighborhood);

// remove duplicates by first sorting, then
// moving duplicates to the back, then
// erasing them.
std::sort(neighborhood.begin(),

neighborhood.end());
std::deque<v3d>::iterator it =

std::unique(neighborhood.begin(),
neighborhood.end());

neighborhood.erase(it, neighborhood.end());

Once we have the data points, we have to create a convex hull for the data set.
The convex hull is the smallest convex polygon that can contain all the points in
the data set. If the data points were nails driven into a piece of wood, the convex
hull would be formed by a rubber band stretched around the outside of the
nails.

The Convex Hull is a convex polygon that bounds the outermost edges of the
3-ring neighborhood v. It acts like an elastic rubberband that stretches open to
encompass the object.

In order to construct the convex hull, we use a variation of the Graham scan
method, as detailed in [4].

See Figure 3 for an example of a convex hull.

Here is the c++ code to create the convex hull.

std::sort(pts.begin(), pts.end());
std::deque<v3d>::iterator it = std::unique(pts.begin(),

pts.end());
pts.erase(it, pts.end());

// create the dividing line

9

Figure 3: Convex Hull of Data Points

v3d left = v_copy.front(),
right = v_copy.back();

v_copy.pop_front();
v_copy.pop_back();

float det_x = right.x - left.x;
float det_z = right.z - left.z;
float m = det_z/det_x;

std::deque<v3d> upper, lower;

upper.push_front(left);
lower.push_front(left);
// partition the vertices into points
// above and below the line left->right
while(!v_copy.empty()) {

v3d v = v_copy.front();
v_copy.pop_front();
float slope = (v.z - left.z)/(v.x - left.x);
if(m<=slope) {

10

// above line
upper.push_back(v);

} else {
// below line
lower.push_back(v);

}
}

upper.push_back(right);
lower.push_back(right);

out.clear();
// create upper hull
std::deque<v3d> u_hull(upper);
half_hull(u_hull, -1.0f);

// create lower hull
std::deque<v3d> l_hull(lower);
half_hull(l_hull, 1.0f);

// create final convex hull
// lower is in clockwise order, with right at the end
// add it to upper, and omit right
u_hull.pop_front();
u_hull.pop_back();
while(!u_hull.empty()) {

l_hull.push_back(u_hull.back());
u_hull.pop_back();

}

// l_hull contains the convex hull
std::deque<v3d>(l_hull).swap(out);

3.4. Bezier Surface. Our method of computing curvature at a mesh vertex
requires approximation of the neighborhood of that vertex by a biquadratic
Bezier surface. In order to calculate the Bézier surface, we need to determine
the control points. We do this by creating an initial input for the control net,
and then apply a non-linear least squares fitting to the control points in order to
minimize the distance for each point from its parameterized analog on the
surface. As an initial estimate, we create a minimal bounding box for the point
set and then create a rectangle that contains the point of interest perpendicular
to the normal of the facet, and then subdivide this rectangle into four quadrants
and use the nine points defining these quadrants as the control points.
However, in order to do this, we need to first find the minimal bounding box. To
do this we use an algorithm called rotating calipers, which was developed by

11

Figure 4: Minimal Bounding Box surrounding Convex Hull

Godfrey Toussaint [6]. This procedure involves rotating a rectangular shape
around the convex hull, taking advantage of the fact that any minimal bounding
box will have at least one side that contains an edge of the convex hull. See
Figure 4 for an example.

Here is the c++ code to create the minimal bounding box.

const unsigned int num_box_pts = 4;
// array of current bounding box
// vectors associated with each point
// initialize to unit vectors in the
// positive and negative horizontal and
// vertical directions
v2d v2_list[4] = {v2d(0.0f, -1.0f), v2d(1.0f, 0.0f),

v2d(0.0f, 1.0f), v2d(-1.0f, 0.0f)};

// find the vertices with the minimum and maximum x and z
// coordinates. These are p_i, p_j, p_k, and p_m,
// respectively. p_m is called p_l in the paper,

12

// we call it p_m because it is difficult to
// distinguish p_l (p_ell) from p_1 (p_one)
std::deque<v3d>::size_type p_i = 0, p_j = 0,

p_k = 0, p_m = 0;
std::deque<v3d>::size_type pI, pJ, pK, pM;
v2d vI, vJ, vK, vM;

float max_y = in[0].y;
for(std::deque<v3d>::size_type i = 0; i<in.size(); ++i) {

float x = in[i].x, z = in[i].z;
float y = in[i].y;

// vertex with minimum x value
if(in[p_i].x > x) p_i = i;

// vertex with maximum z value
if(in[p_m].z < z) p_m = i;

// vertex with maximum x value
if(in[p_k].x < x) p_k = i;

// vertex with minimum z value
if(in[p_j].z > z) p_j = i;

if(max_y < y) max_y = y;

}

max_y += 0.1f;

// now in[p_i] is minimum x, in[p_m] is minimum z
// in[p_k] is maximum x, and in[p_j] is maximum z
pI = p_i;
pJ = p_j;
pK = p_k;
pM = p_m;
vI = v2_list[0];
vJ = v2_list[1];
vK = v2_list[2];
vM = v2_list[3];
v2d p2_list[4] = {v2d(in[p_i]), v2d(in[p_j]),

v2d(in[p_k]), v2d(in[p_m])};
v3d temp;
temp.y = max_y;
temp.x = vI.x;

13

temp.z = vK.z;

// initialize the corner matrix to
// the axis-aligned bb corners
out.push_back(temp);
temp.z = vM.z;
out.push_back(temp);
temp.x = vK.x;
out.push_back(temp);
temp.z = vJ.z;
out.push_back(temp);
out.clear();
float area = calc_bb_area(p2_list, v2_list);
// array of indices for current extreme
// points for calculating bounding box
std::deque<v3d>::size_type *p_list[num_box_pts] = {&p_i, &p_j, &

p_k, &p_m};

// starter vector to determine when done
v2d first(in[wrap(in, p_i+1)] - in[p_i]);
first = unit(first);
// We now dot the unit vectors parallel with
// p_i->p_i+1, p_j-p_j+1, p_k->p_k+1,
// p_m->p_m+1etc with the vectors <0 0 1>,
// <1 0 0> <0 0 -1> and <-1 0 0>,
// respectively to get the cosines of the
// of the angles between each pair. Then,
// we choose the side with the smallest
// angle (the largest cosine).
int count = 0;
float dot_check = 1.0f;
std::vector<v3d> cur_bb;
while(dot_check > 0.0f) {

// initialize to < min value of cos,
// guaranteeing that it will hit at least
// one cycle
float max_cos = -2.0f;
++ count;
unsigned int max_index = 0;
v2d max_v;
for(unsigned int ci = 0; ci < num_box_pts; ++ci) {

std::deque<v3d>::size_type i0 = *p_list[ci], i1 = wrap(in
, i0+1);

v2d old_v(v2_list[ci]);
v2d new_v(in[i1] - in[i0]);
new_v = unit(new_v);

14

float cur_cos = dot(new_v, old_v);
if(cur_cos > max_cos) {

max_cos = cur_cos;
max_index = ci;
max_v = new_v;

}
}
*p_list[max_index] = wrap(in, *p_list[max_index]+1);
for(unsigned int i=0; i<num_box_pts; ++i) {

unsigned int cur_i = (max_index + i)%num_box_pts;
v2_list[cur_i] = max_v;
max_v = v2d(-max_v.z, max_v.x);
p2_list[cur_i] = v2d(in[*p_list[cur_i]]);

}
float new_area = calc_bb_area(p2_list, v2_list);
if(new_area < area) {

pI = p_i;
pJ = p_j;
pK = p_k;
pM = p_m;
vI = v2_list[0];
vJ = v2_list[1];
vK = v2_list[2];
vM = v2_list[3];
area = new_area;
out.clear();
for(unsigned int i=0; i < num_box_pts; ++i) {

unsigned int ci = i, ni = (i+1)%num_box_pts;
v2d p1 = p2_list[ci] - 20.0f*v2_list[ci], p2 = p1 +

40.0f*v2_list[ci];
v2d p3 = p2_list[ni] - 20.0f*v2_list[ni], p4 = p3 +

40.0f*v2_list[ni];
float x1 = p1.x, x2 = p2.x, x3 = p3.x, x4 = p4.x;
float z1 = p1.z, z2 = p2.z, z3 = p3.z, z4 = p4.z;

float x = (((x1*z2 - z1*x2) * (x3 - x4)) -
((x1 - x2) * (x3*z4 - z3*x4)))/
(((x1 - x2) * (z3 - z4)) -
((z1 - z2) * (x3 - x4)));

float z = (((x1*z2 - z1*x2) * (z3 - z4)) -
((z1 - z2) * (x3*z4 - z3*x4)))/
(((x1 - x2) * (z3 - z4)) -
((z1 - z2) * (x3 - x4)));

v3d temp;

15

temp.x = x;
temp.y = max_y;
temp.z = z;
out.push_back(temp);

}
}

Figure 5: Biquadratic Bezier patch.with 9 control points

A Bezier surface can be thought of as a surface constructed of patches. Each
patch is defined as the image of a Bezier function that maps the unit square into
a smooth-continuous surface embedded within a space of the same
dimensionality. In order to compute the curvature of this Bezier surface, we
need to obtain the 9 Bezier control points bi.j . These 9 points are obtained by
the least squares fit method, in which the v∗∗∗ set of points are used as data
points in the nonlinear least squares fit method. Unfortunately, this is the point
at which we ran out of time, as we have been unable to get the fitting to work
properly. See Figure 5 for an example of a biquadratic Bézier surface.

4. Future Directions

We have code to evaluate a Bézier surface, but the least squares packages we
have been using seem to fail at fitting the data points in order to determine the
control points. We believe that the problem is the parameters we are using for
the least squares fit.

16

Once we have determined the Bézier coefficients for the local surface, we can
then go forward with trying to determine the location of the vessels by using the
areas of extreme curvature to pinpoint “ridge” locations, which are likely to
correspond to protruding blood vessels. Once we obtain the portion of the
vessels protruding above the surface of the placenta, it is our hope that we can
then use this geometry to reconstruct the major features of the vessel network,
including the diameter of the most prominent arteries and veins.

5. Acknowledgements

We would like to thank Dr. Salafia and her team for providing the original STL
files that we used in preparing this report. We would also like to thank Professor
Jen-Mei Chang for her advice and encouragement on this project. In addition, we
would like to thank all the members of the Math 579 class for great questions
and ideas that significantly improved this project.

References

[1] C M Salafia, M Yampolsky, D P Misra, O Shlakhter, D Haas, B Eucker, and J Thorp. Placental
surface shape, function, and effects of maternal and fetal vascular pathology. Placenta,
31(11):958–62, 2010.

[2] Nizar Almoussa, Brittany Dutra, Bryce Lampe, Pascal Getreuer, Todd Wittman, Carolyn
Salafia, and Luminita Vese. Automated vasculature extraction from placenta images, 2009.

[3] Gerald Farin. Curves and surfaces for CAGD - a practical guide (3. ed.). Computer science and
scientific computing. Academic Press, 1992.

[4] Mark de Berg, Marc van Kreveld, Mark Overmars, and Otfried Schwarzkopf. Computational
Geometry: Algorithms and Applications. Springer-Verlag, second edition, 2000.

[5] Anshuman Razdan and MyungSoo Bae. Curvature estimation scheme for triangle meshes
using biquadratic bézier patches. Comput. Aided Des., 37:1481–1491, December 2005.

[6] Godfried Toussaint. Solving geometric problems with the rotating calipers. In In Proc. IEEE
MELECON Õ83, pages 10–02, 1983.

17

