EXTRACTING PLACENTAL BLOOD VESSELS FROM 3-D DATA

By: David Harr, Hung Trinh, Nancy Che Mahan Math 579: Mathematical Modeling with Dr.J en-Mei Chang Spring 2011

PWACA: PROJECT WITHOUT A COOL ACRONYM

By: David Harr, Hung Trinh, Nancy Che Mahan Math 579: Mathematical Modeling with Dr.J en-Mei Chang Spring 2011

TABLE OF CONTENT

- Introduction
- Objective (Hung)
- Research Method / Technique
- Data: STL (Hung)
- Initial Attempted Method of Computing Curvature: CGAL (Hung)
- Mathematical Background: (Nancy
- Curvature
- Surface Fitting:
- Vertex List
- Adjacency List
- $\mathrm{V}^{* * *}$ - 3-ring neighborhood
- Convex Hull
- Minimal Bounding Box
- Bezier Surface
- Results (David)
- Future Work
- Conclusion
- References
- Acknowledgments

INTRODUCTION: OBJECTIVE

- We will analyze the structure of a 3D model of a human placenta, in order to extract the network of placental blood vessels that protrude above the placental surface.
- We will reconstruct this network in 3D, to allow for blood-flow volume analysis.

Placental 3D Image creatuchioly STL File

CREATING VESSEL NEITWORK

3D Mesh created from STL

- The data we use is from an STL file already provided by researchers.

What is an STL file?

- STL (stereolithogrpahy) is a file format software created to store information on 3D objects, and to reproduce a physical 3D model.
- STL files describe only the surface geometry of a three dimensional obj ect without any representation of color or texture.
- STL format specifies both ASCII and binary (more common) representations.
- STL file reproduces an obj ect's 3D geometry by storing a set number of 3D triangulated surface, by the unit normal and vertices of the triangles using a 3-dimensional Cartesian coordinate system

RESEARCH METHOD: DATA

STL Example: Tetrahedron

SOLID TRI

FACET NORMAL 0.0 0.0-1.0
OUTER LOOP
VERTEX -1.5-1.51.4 VERTEX 0.01 .71 .4 VERTEX 1.5-1.51.4 ENDLOOP
ENDFACET
FACET NORMAL 0. 00.881480 .472221
OUTER LOOP
VERTEX-1.5-1.5 1.4
VERTEX 1.5-1.5 1.4
VERTEX 0.0 0.0-1.4
ENDLOOP
ENDFACET
FACET NORMAL -0. 876814 -0. 4110070.24954 OUTER LOOP
VERTEX 1.5-1.5 1.4
VERTEX 0.01.71.4
VERTEX 0.0 0.0-1.4
ENDLOOP
ENDFACET
FACET NORMAL 0. 876814 -0. 4110070.24954 OUTER LOOP
VERTEX 0.0 1.71.4
VERTEX-1.5-1.51.4
VERTEX 0.0 0.0-1.4 ENDLOOP
ENDFACET
ENDSOLIDTRI

OUR PLACENTA STL

```
facet normal outer loop vertex vertex vertex endloop endfacet facet norma outer loop vertex vertex vertex endloop
endfacet
facet norma
outer loop vertex vertex vertex
\(3.620636 e-01 \quad 9.210081 e-01-1.437154 e-01\)
\(5.528387 \mathrm{e}+01 \quad 1.902180 \mathrm{e}+01-4.269304 \mathrm{e}+01\)
\(5.478359 e+01-1.926661 e+01-4.238448 e+01\)
\(5.545042 e+01\)
\(1.912409 \mathrm{e}+01-4.161794 \mathrm{e}+01\)
\(3.112122 \mathrm{e}-01 \quad 9.455894 \mathrm{e}-01\)-9.490848e-02
\(5.482898 e+01 \quad 1.935173 e+01-4.138762 e+01\)
\(5.545042 \mathrm{e}+01 \quad 1.912409 \mathrm{e}+01-4.161794 \mathrm{e}+01\)
\(5.478359 e+01\)
. \(926661 e+01\)
\(1.307343 e-02 \quad 9.973741 e-01-7.123253 e-02\)
\(5.682782 e+01 \quad 1.924272 e+01-4.126116 e+01\)
\(5.651205 e+01 \quad 1.912408 e+01-4.298034 e+01\)
\(5.645091 e+01\)
\(1.926258 e+01-4.105225 e+01\)
``` endloop endfacet

\section*{199,970 triangles}

Orcler:
Arbritary
- Computational Geometry Algorithm Library: Alibrary that contains al gorithms for computational geometry.
-
Discover ridg s on triangulated su aces ie. protruding \(b\) od vessels in our placental 3D model.

Crest ridges of David

\section*{NEIGHBORHOOD CONSTRUCTION}

\section*{NEIGHBORHOOD CONSTRUCTION}

\section*{NEIGHBORHOOD CONSTRUCTION}

\section*{THE 3-RING NEIGHBORHOOD V***}

\section*{CONVEX HULL}

\section*{MINIMAL BOUNDING BOX}

\section*{ZIER CONTIROL POINTS}

\section*{MPUTING CURVATURE USING}

\section*{ZIER SURFACE}
\[
X(u, v)=\sum_{i=0}^{2} \sum_{j=0}^{2} b_{i, j} B_{i}^{2}(u) B_{j}^{2}(v)
\]
\(b_{i, j}=\) Bézier Control Points, ie. the 9 vertices of
the Bézier control net
\[
\begin{aligned}
& B_{i}^{2}(u)=\binom{2}{i} u^{i}(1-u)^{2-i} \\
& \left(^{2}\right)=\left\{\frac{2!}{i!(2-i)!} \text { if } 0 \leq i \leq n\right.
\end{aligned}
\]

\section*{ATHEMATICAL BACKGROUND:} AUSSIAN CURVATURE

\section*{ATHEMATICAL BACKGROUND: AUSSIAN CURVATURE}

\(=\) the principal curvatures, i.e. the maximum \(\&\) minimum curvature
Mean curvature, ie. the average of the principle curves

\section*{EMO}

\section*{REFERENCES}
[1] Lili Xu and Shuqian Luo. A novel method for blood vessel detection from retinal images. BioMedical Engineering OnLine, 9(1):14, 2010.
[2] Yan Xu, Hui Zhang, Hao Li, and Guangshu Hu. An improved algorithm for vessel centerline tracking in coronary angiograms. Computer Methods and Programs in Biomedicine, 88(2): 131 \{143, 2007.
[3] Zhou Shouj un, Yang J ian, Wang Yongtian, and Chen Wufan. Automatic segmentation of coronary angiograms based on fuzzy inferring and probabilistic tracking. BioMedical Engineering OnLine, 9(1): 40, 2010.
[4] Marc Pouget and Frdric Cazals. Approximation of ridges and umbilics on triangulated surface meshes. In CGAL User and Reference Manual. CGAL Editorial Board, 3.7 edition, 2010. httpl:/ / www.cgal. org/ Manual/ 3. 7/ doc_html/ cgal_manual/ packages. html \\#Pkg\:Ridges_3.
[5] Ruben Reyes. Stl les, 2007. https:/ / webspace. utexas. edu/ reyesr/ titanium/ stl/ stlmarch17. htm.
[6] M.I.A. Lourakis. levmar: Levenberg-marquardt nonlin-ear least squares algorithms in \(\mathrm{C} / \mathrm{C}+\mathrm{+}\). [web page] http:// www. ics.forth. gr/ - ourakis/ levmar/ , J ul. 2004. [Accessed on 31 J an. 2005.].
[7] Anshuman Razdan and MyungSoo Bae. Curvature estimation scheme for triangle meshes using biquadratic bezier patches. 9(1):21, 2005.
[8] Alej o Hausner. Graham's scan, J uly 1996. http:/ / www. cs. princeton. edu/ courses/ archive/ spr10/ cos226/ demo/ ah/ Grahamscan. html.
[9] Alejo Hausner. Convex hull, J uly 1996. http:/ / www. cs. princeton. edu/ courses/ archive/ spr10/ cos226/ demo/ ah/ ConvexHull.html.

\section*{ACKNOWLEDGEMENTS}
1. Dr. J en-Mei Chang

Applied Math Professor at California State University, Long Beach Professor of Math 579, Mathematical Modeling, Spring 2011
2. Dr. Carolyn Salafia

Research on Placental Models, STL files and Placental 3D-model images provided by Dr. Carolyn Salafia
©THANK YOU VERY MUCH.
- QUESTIONS ??

๑ COMMENTS !!!```

