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Abstract. Placental maturity is a qualitative measure of villous evolution assigned by histol-
ogists, which reflects the uterine environment’s condition and fetal development stage [6, 3]. We
quantified the geometric differences that constitute maturity, immaturity, and hypermaturity,
by comparing the perimeter, area and circularity distributions of villi from microscopic slide
images of placentas in each maturation category. A MATLAB program using Shai’s algorithm
was created to remove maternal blood and segment images, which was performed with vary-
ing degrees of success on the histology image set. Another algorithm was produced to record
area and perimeter measurements on the cleaned images, which we used to compare the perfor-
mance of Shai’s algorithm against “perfectly-cleaned” benchmark images altered in Photoshop
CS5. No significant linear relationships or correlations were found between medical variables
and measurement variables, due to a small sample size (27) and relying on image quadrants to
represent each sample.

1. Introduction

As the conduit between mother and baby, the placenta enjoys a complex status as a variable in
the health of its infant. It utilizes the uterine environment, which is influenced by the mother’s
health conditions, weight gain over the course of pregnancy, her nutrition and drug intake, and
a number of other factors [3]. The placenta exchanges the substances diffused through the
placental barrier to the fetus [3]. The placenta is thus a reflection of and influence on infant
health, development, and gestation, and the degree to which it impacts fetal development is
a challenge to gauge. Moreover, in order to support fetal growth, the placenta undergoes its
own patterns of development which mirror the paths of change of the infant [3]. Consequently,
conditions which alter or inhibit the placental growth patterns have an immediate impact on
the fetus [3].

The mode of study which makes all of these influential factors on the placenta most apparent
is histology. A microscopic slide of a placental cross-section can tell the trained histologist the
health conditions of the mother, such as pre-eclampsia, diabetes mellitus, or abnormalities in
the uterus; and about her external environment, such as if she lives at high elevation [3, 4]. A
histological slide, most importantly, reflects developmental milestones in the fetus, through an
aggregate of histologic observations united under a concept called Placental Maturity [3, 4, 9].

1.1. Defining Placental Maturity. Placental Maturity is a term histologists use to indicate
a the degree of deviation from a normal range of visual features shared by placentas paired
with healthy infants [3, 9]. The feature set for a healthy, term infant not only insists on
the absence of disease (i.e. inflammation, edema, meconium stain, or hypoxia), the range of
quantitative geometric and numerical properties of villi shape, blood vessels, synctial knots, and
fibrin deposits avoid extremes [3, 9].
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Figure 1. Diagram of villous developments and maldevelopment from [3]. The
middle path represents normal development; the left path leads to immaturity, the
right to hypermaturity. These paths represent respective extremes in the shapes
of villi.

The placenta, as mentioned, follows its own growth patterns, and as the name implies, pla-
cental maturity for healthy infants greatly depends on chronology. Figure 1 succinctly shows
the development of the placental villi, with paths to under or over development also displayed.
Shown is the process of the villi beginning as a round ball, then branching (intermediate villi),
then budding (terminal villi) [3].

Although ours is a simplified description of placental development, it focuses on what histol-
ogists expect to find in a cross-sectional slide of a healthy term infant’s placenta: a non-extreme
distribution of both larger, rounder intermediate villi and smaller irregularly-shaped terminal
villi, with a reasonable number of blood vessels, synctial knotting, and fibrin deposits [3, 4, 9].

Over the time of gestation, if one could ethically or physically observe weekly placental cross-
sections, healthy growth would follow a progressive pattern as it matures [3, 9]. One round
villi would eventually grow in size and split into many, smaller, irregular villi, until the image
is congested with cross-sections of many small terminal villi and some intermediate villi [3];
simultaneously each week, more blood vessels would appear [3, 9]; the blue-staining nuclei
of the epithelium-like tissue surrounding each villi (called synctiotrophoblast) would begin as
evenly spread across each surface, then in later weeks break up and gather into clusters (called
synctial knots) [3, 9]; concurrently, clots of blood from vessels would pool and coagulate into
large red masses (called fibrin deposits), which increase in number with advancing gestation
[3, 4].

1.1.1. Asynchronous Maturity. Akin to the fetus, the placenta can also undergo maldevelop-
ments, which may be a reflection of a pathology in the uterine environment [3, 2, 7, 9]. In
this case the placenta’s failure to occupy optimum area on the uterine wall, whether through
forming an irregular shape or insufficient size impacts the fetal development [7]. Conversely
placental maldevelopments may simply mirror the fetal maldevelopments [3, 9]. In either case,
an assessment of placental maturity which is asynchronous with respect to the actual gestational
age is cause for concern on the part of the physician [3, 2, 9].
Immaturity . Immaturity may be defined as a placental maturity appearance which is not ad-
vanced enough for the gestational age of the infant [3, 9]. The appearance will manifest as
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large irregular, perhaps long villi, with few small, round terminal villi present [3, 9]. Such an
appearance at term may indicate, cause or correlate with meconium contamination, overly long
gestation, high birth weight, infection, or retarded growth [3, 9, 4]. Blood vessels do not follow
a single trend for immaturity; many pathologies either restrict or over-develop the proliferation
of blood vessels despite how the villi develop [3, 4].
Hypermaturity . Hypermaturity is then the appearance of advanced gestational age without be-
ing in advanced gestation[3]. The quick overdevelopment of a placenta may trigger premature
delivery since the placenta produces hormones which trigger the labor process [3]. A hyperma-
ture appearance may also be a symptom of, indicate, cause or correlate with premature birth,
preeclampsia, hypoxia, suspected placental inefficiency [6], anemia, or gestation at high altitude
[3].

In summation, placental maturity is a gestalt term used by histologists to describe a set of
features for which a trained eye can instinctually recognize, as most humans can tell from a
person’s face roughly what age they are. Qualitatively, most people could place a quantity (age)
on a face and be within a reasonable number of years. We propose that placental maturity is a
continuous measurement range of geometric properties. Histologists have only placed placental
maturity into categorical classifications because there has so far been no definitive quantitative
interpretation of the concept; thus the boundaries of the categories are also ill-defined. Indeed
if a histologist were given a borderline case, some criteria should exist for them to decide
how to classify the case. In principle, some quantitative thresholds should exist in order to
validate maturity classification. The following paragraphs describe our geometric interpretation
of histologists’ descriptions of placental maturity.
Villous Irregularity . We have mentioned the term “irregularity” in regards to the outline shape
of villi. We have interpreted this as a deviation from roundness. Toward the end purpose of
analysis and comparison between placentas, we have selected the shape factor Circularity, which
measures how close to a perfect circle a shape is. Its values occur on a normalized scale where
1 represents a perfect circle, and numbers close to 0 represent eccentric or convoluted shapes
[1]. A similar shape factor was used in reference [2], specifically perimeter2/area. However
due to the ability to directly measure circularity with Photoshop and the attractiveness of a
normalized scale, we found circularity a more natural choice. To account for differences among
images we later encountered, the independence from measurement dimensions aids to overcome
potential errors. Mathematically [1]:

(1.1) Circularity = 4π

(
Area

Perimeter2

)
We expect the distribution range of circularity present in a healthy term placenta to be, on
average, a value from 0.6-0.8, due to the mixture of intermediate and terminal villi, but pre-
dominantly terminal villi [3, 9].
Number of Blood Vessels . The number of blood vessels present indicates the density of blood
vessels given a placental cross section [9, 4]. Immature placentas will have fewer, perhaps larger
vessels, and hypermature placentas possess many small vessels crowding the villi [3, 9].
Number of Fibrin Deposits . The number of fibrin deposits increase with advancing gestation.
We expect more deposits in more advanced maturity, though they occur with a large variance
in healthy placentas [3].
Number of Synctial Knots . The occurrence of synctial knots also increase with advancing ges-
tation [3, 9]. The knots also appear in varying degrees for healthy placentas, and a strong trend
is not expected [3, 9].

2. Research Methods

2.1. Data Set. Our sample set consisted of 27 unique subsets of mother, infant, and placenta.
The histology images given for each placenta were initially scanned from one large cross-sectional
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slice, at unknown depth, in the plane using the insertion of the umbilical cord as the normal
vector. They were all colored using hematoxylin and eosin stain (H & E)[4]. However, due to
logistical obstacles, we only gained access to images of smaller sections of the full-size images.
This resulted in 64 images total, of which one placenta may have been represented by anywhere
from 1 to 9 quadrant images. Our group also had no knowledge of how the images were selected
for us; it is possible that a disproportionate amount of placentas with pathological traits, or
traits “of interest” were given. We were also given no information on microscopic resolution,
zoom or scale.

Also provided was a Microsoft Excel data sheet from a study performed by researchers at
the University of North Carolina. It included an extensive list of variables and measurements
recorded about the mother, infant, and placenta, and conditions surrounding the pregnancy
(united under a single “Lab ID”).

2.2. Image Analysis to assess Placental Maturity. Our aim was to collect measurements
of the relevant placental maturity variables, and analyze the UNC data to explore if placen-
tal maturity plays any role with medical variables. We then explored several avenues toward
measuring images, through algorithm-operated and human-operated methods.

The following shows the process by which we cleaned, measured, and analyzed the images.

(1) Clean-up the maternal blood and small villi of the image.
• Image segmentation through MATLAB.
• Image segmentation through Adobe Photoshop CS5.

(2) Measure the perimeter and area of the image villi.
• Measure MATLAB-cleaned image with MATLAB functions.
• Measure Photoshop-Cleaned image with MATLAB functions.
• Measure uncleaned image with Photoshop Selection tool method.

(3) Count the number of blood vessels from the uncleaned images.

2.3. Measurement Variables. As mentioned above, we only measured the number of blood
vessels per slide, villi areas and villi perimeters. There are two variables related to placental
maturity which could not be analyzed through the programs we developed.

Blood vessels and fibrin deposits could not be counted automatically (or separately). First,
since fibrin deposits, vessel tissues and red blood cells stain the same colors in the H & E dyeing
process [4], the measurement methods could not distinguish between them, since the initial
segmentation algorithms were based on identifying a “red” color. Second, even if an algorithm
could identify and delete only fibrin and red blood cells external to villi, blood vessels in villi
(and in general) consist of two types: arteries and veins [4]. Arteries must withstand higher
pressure from the heart than veins, and the vessel tissues are resultantly thicker [4]. Vein walls
are thinner, and in advanced placenta slides, may appear to be empty white space, perhaps
filled with some red blood cells [3, 4]. The prospect of programming a computer to distinguish
between all cases was too great for the time constraints and experience given.

A similar problem occurs when attempting to count synctial knots. The distinction between
an oblong trophoblastic border around a villi, a single synctiotrophoblastic nucleus, and a
true knot was too fine a distinction to implement in our algorithm, especially without scaling
information that could be corroborated with available medical data.

The large variance mentioned in sections 1.1.1, and mentioned in [3], seemed to be too sta-
tistically weak to hypothesize that they would help correlate with any medical data. We thus
found it satisfactory to use area, perimeter, circularity, and the number of blood vessels as the
functional measurements for placental maturity.

2.4. Image Pre-Processing. Our goal in this step is to remove extraneous information from
the histology image, but that is the final part of a multi-step problem. As seen in figure 2, there
are maternal red blood cells present in the intervillous space that will interfere with future
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measurement. Consequently, there are several things that must be done before the image is
cleaned. First, we must be able to differentiate between the different colors as well as the slight
variations in each color as well. Second, we must find a way for MATLAB to distinguish any
red blood cells in the intervillous space from a blood vessel inside a villus. And finally, we need
to be able to remove outside blood while keeping the inside vessels intact.

Figure 2. Original Histology Image 1479 1.

Because our results depend on measuring area of the villi as well as perimeter, any extra
blood and cells outside of the villi will skew the results. So it is important that these elements
on the image be removed before doing any calculations.

2.4.1. Segmentation Through MATLAB. Any image can be viewed as having a 3× 1 vector for
each pixel. This vector contains information for red, green, and blue color values. For example,
a red pixel would have the vector [1 0 0] while a blue pixel would have the vector [0 0 1]. Also
any combination of these values from 0 to 1 would result in different colors being formed.

In figure 2, there are clearly four different colors: pink, red, purple, and white. Ideally
we would separate the four colors and process each image separately, but we cannot just tell
MATLAB to remove all the non-pink pixels from an image. If one were to carefully inspect the
image, it is clear that for pink, and other colors, there are slight variations in the pixel value.
So instead of just recognizing what is pink or red, we must have MATLAB recognize what is
“pink-ish” and “red-ish.” That way all the colors that appear to be a certain color will be
recognized as that specific color.

To deal with this problem, we considered two different methods of image segmentation: an
automatic approach, and a non-automated approach. The automated algorithm we tried and
had the most success with was based on Bagon Shai’s algorithm to quantify color images using
mean-shift based quantizer [8]. The images in figure 3 were segmented using Shai’s algorithm
three times.

Although the algorithm performed well in the far-left and middle pictures of figure 3, not all
the colors are segmented correctly. Neither image contains the important red vessels. The final
image is completely unusable for any calculations. If our goal was to simply isolate the villi, this
algorithm would be useful, but since we want to calculate areas of each color, we need another
way to segment the images.

The second method we tried, and eventually used, was inspired by a K-means segmentation
with Mahalanobis distance metric [2]. Unlike the automated algorithm, this method relies on
predetermined color markers. This way, instead of having varying results, all images will be
transformed into a simpler image based on those color markers. For our images, we decided that
an average pink value was about [1 0.7 0.8], red was about [1 0.5 0.6], and purple was about
[0.6 0.4 0.65]. These numbers were obtained by manually selecting a typical color in one image
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Figure 3. Automated algorithm output of slide 1479 1.

and averaging them throughout all our images. From here, we needed a way to determine if a
pixel was pink or any other color. For this we simply used the Euclidean distance between a
pixel value and the color markers and the closest color marker was used as the color value for
that pixel. Using this approach, we were able to get a consistent result with a clear segmentation
between our four colors.

The next thing we had to do was remove all the small isolated vessels that lie outside the
villi. For this we simply used MATLAB’s built-in morphological operations [5] to remove small
areas under a certain threshold. The resulting image is as follows:

Figure 4. Predetermined Color Marker segmentation of slide 1479 1.

Figure 5. Cleaned image of slide 1479 1.
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2.4.2. Clean-up Through Photoshop CS5. All of the original images we used for collecting our
data were cleaned up using two different methods, a MATLAB algorithm we created and Adobe
Photoshop CS5. “Cleaning” refers to removing maternal blood cells and fragments of villi in
the intervillous space. In total, 52 images were “Photoshopped.” To perform the cleaning via
Photoshop, two tools were used for every image, the Magic Wand Tool and the Paintbrush tool.
For some images, a third tool called history brush was also used.

We used the Magic Wand tool to select the areas of the image we wanted to remove. Clicking
on a pixel (which was considered the cursor pixel) in an image with the magic wand, all of the
neighboring pixels which have equal value or deemed similar in color value are selected. These
values can be specified through the options to determine the exact selection. The option we
commonly used was Tolerance, which has values ranging from 0 to 255, based on the RGB color
space. It determines how similar in color a neighboring pixel must be in order to be selected.
Lower numbers imply a low tolerance and higher numbers imply a high tolerance. For example,
if 0 is selected as the tolerance, all neighboring pixels will have to have exactly the same value
to be selected; if 255 is chosen, all pixels will be selected. We chose the tolerance to be 20, 30
or 40 depending on the image. Then the selected pixels were removed by pressing the Delete
keyboard command.

Colors that are similar which are not neighboring the cursor pixel will not be selected, leaving
many fragments of cells which the tool could not identify. After using the magic wand tool as
much as possible, we used the Paintbrush tool to replace the color of unwanted pixels with white
pixels.

The history brush tool was used when the Magic Wand tool made accidental deletions. By
opening the History palette, we could identify when the image was correct and paint the image
back on. Figure 6 shows an example of an image that has undergone this process.

Figure 6. Photoshopped Image.

2.5. Image Measurements. The cleaned-up images obtained in the previous section are pre-
pared for an algorithm to measure. The placental maturity variables we are interested in from
the Photoshopped and MATLAB-segmented image sets are villi area and to a lesser degree,
perimeter. As previously discussed, there were too many obstacles to effectively count the
number of blood vessels.

The basis of the measurement algorithm we developed is counting, which presents problems
later when attempting to use the data for analysis. This stems from the inclusion of villi that
have edges extending beyond the edge of the image. The perimeter measurement included the
straight border edges of villi; the area measurement of a single cut-off villus is similarly distorted.
Any comparison we would potentially make using the circularity formula with these images
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would hold no significance. For the Photoshop and MATLAB cleaned images, we designed the
algorithm to simply count the total area of all villi, and the total perimeter of all borders.

In order to obtain reliable measurements that could be used for analysis of circularity, and
additionally to measure the distribution of blood vessels, we utilized Photoshop CS5 and its
measurement tools.

In summary, we collected two sets of total area and total perimeter measurements using a
single MATLAB algorithm (one from the Photoshop cleaned images, one from the MATLAB
cleaned images). For each non-edge villi from every original untouched image set, we collected
area, perimeter, circularity, and number of blood vessel measurements.

2.5.1. MATLAB Measurement Program. In order to calculate total area and total perimeter
from cleaned images, we implemented a MATLAB algorithm which measured the total area
and perimeter of each image. The total area is the total number of pixels which are pink, red
and blue. This also included all of the white pixels completely surrounded by pink, red or blue
pixels, in order to account for empty veins inside a villus.
Total Area and Total Perimeter . We used one algorithm named Find Areas (see Appendix sec-
tion 2) to find the total area and perimeter for both sets of cleaned up images, Photoshopped
images and images cropped the program Modeling Project (see appendix section 1). The fol-
lowing outlines the details of the algorithm:

(1) Imports an image from the specified file directory.
(2) Converts all pixels of the image into pink, red, blue or white, depending on which color

it is closest to in the RGB color space.
(3) Segments the pink, red and blue pixels and calculates the area for each of them.
(4) Combines the pink segmented image, red segmented image and blue segmented image.
(5) Fills any area of pixels surrounded by pink, red or blue pixels.
(6) Calculates the total area and perimeter.
(7) Reads next image in the file directory and repeats until all images are processed.

Figure 7. Images segmented by color values.

We used a simple loop to convert all the pixels of each image into pink, red, blue or white,
depending on how each color value was defined. Through a process of trial and error we selected
a set of color values that produced the best output for the greatest number of images. The
loop considers the color value for each pixel, finds the user-specified color value the pixel most
resembles, then assigns that value to the pixel. Black pixels were not evaluated against the
user-specified color value, but automatically converted to white.

The program then enters another loop to segment the pink, red and blue pixels. The loop
takes the image that now only contains pink, red, blue and white pixels and creates three
different images, with each color assigned to an image (see figure 7). The three images are then
converted to black and white using the MATLAB function im2bw. After they are converted
to black and white, the function bwarea is used. bwarea estimates is the area of the objects.
The scalar value given is a rough estimate of the total number of pixels in the image. The
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Figure 8. Total area as segmented by MATLAB (left); total perimeter of an
image as measured by MATLAB (right).

program then combines the segmented images using the function imadd. It must be used twice
in order to combine all three images, since it can only combine two images at once. We then use
imfill(image name, ‘holes’), with the holes option, to fill dark areas of pixels surrounded
by light pixels. bwarea and bwperim were then run on the images, which return the total area
and total perimeter, respectively. bwperim produces an image of only border pixels, as seen in
figure 8. This warrants another use of bwarea on these outline images to measure the perimeter.
bwarea simply counts the number of white pixels present in each image.

2.5.2. Photoshop Selection Measurement Tool. We used Photoshop CS5 to measure the villi
area and perimeter. This application also automatically calculated the circularity using the
area and perimeter of each villi[1]. The specific process of measurement is as follows:

(1) Open desired image.
(2) Click “Window” > “Measurement Log.”
(3) Select Lasso tool.
(4) Trace the border of a villus that is not touching the edge.
(5) In the “MEASUREMENT LOG” toolbar, click “Record Measurement.” A line with the

desired measurement for the selection’s area, perimeter, and circularity are calculated.
(6) Select Paintbrush or Pencil tool. Mark the measured villus.
(7) Repeat steps 3-6 until all non-edge villi are marked.
(8) In the “MEASUREMENT LOG” toolbar, click the icon to “Select all Measurements.”
(9) In the “MEASUREMENT LOG” toolbar, click the icon to “Export Data.”

(10) Save measurements. They will be saved in a tab-delimited text file.
(11) In the “MEASUREMENT LOG” toolbar, click the icon to “Delete Measurements.”
(12) Open next image.

The text files can then be imported into Microsoft Excel.
Although there is no absolute measure of accuracy for the process, accuracy was doubtless

much improved overall by the use of a digital pen and tablet, rather than mouse. Despite this,
larger villi presented a problem; the selection must be made without lifting the pen, so villi
greater than a certain size were measured with a smaller image zoom. This made the pixels on
the border more difficult to see and is possibly a source of error, in addition to simple human
inaccuracy.

As it is probably apparent from the profuse number of steps and level of repetition necessary
to measure an entire slide, the Selection Tool method is a lengthy process for even a small sample
size such as this. For 64 images comprising subsections of full-size images, it took roughly 20
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hours to complete all measurements. Although invaluable for gathering our data, this process
is probably not a practical method for a larger sample size.

2.5.3. Blood Vessels. In order to count the blood vessels in each slide, Photoshop’s Count Tool
was used. Count Tool is located under Analysis in the Tools panel. Photoshop’s Count Tool
can be used to manually count items on an image or to reference or label items [1]. One must
click on the items to be counted and Photoshop then keeps track of the number of clicks. After
clicking on an item the sequential count number will appear next to the item. The number
of items is recorded on the Measurement Log by clicking on “Record Measurements,” which is
located right above the Measurement Log. One may change the marker size, the color, and the
label size if desired. One is also allowed to clear any count measurements if it needs to be reset
for any reason [1].

In some of the histology slides, the blood vessels had already been traced in green. By using
the Tool Count, we simply clicked on all the traced blood vessels and once all the blood vessels
had been identified we recorded the number of clicks, which is the same as the number of blood
vessels. The Measurement Log contains the name of the slide (the lab identification number),
date and time, the source (Tool Count in this case), and the count. The Measurement Log was
then exported to an Excel file so that the data could then be easily analyzed. For the remaining
images, we were to identify all the blood vessels and proceed as normal. Only the blood vessels
in “whole” villi were considered, so any villus overlapping the image edge were disregarded.

The number of blood vessels on each image ranged from 28 to 228. Since full-size slides were
divided into separate images, if a slide had more images than others, then it had disproportion-
ately more counted blood vessels. For example, the total number of blood vessels in placenta
1479 was the sum of the counts of image no. 1479 1 + 1479 2 + 1479 3. For this reason, the
average number of blood vessels per slide was calculated and was used for analysis.

3. Results

There were numerous sources of possible error present in the measurement sets we obtained
through our research methods. We account for all errors first, in order to explain later reasoning.
We also attempt to mitigate the error magnitudes by eliminating certain variables, transforming
measurements to calculate data sets, and conservatively analyzing variables.

3.1. Sources of Error.

• The analytical significance one can attribute to such a small data set is very low. Outliers
have greater impact on trends, which are poorly indicated to begin with due to sparse
distribution.

• The majority of the circumstances under which placentas and slides were prepared, and
the methodology governing data collection from the UNC Excel file are unknown to
us. We therefore cannot advise attributing undue statistical significance to our ad-hoc
analysis of data where the hypotheses of the study are not known.

• None of our research group are trained histologists. Although we identified the anatom-
ical structures to the best of our ability, referring to and learning from excellent medical
texts, it is possible that we identified an object as a blood vessel which was in actuality
a fibrin deposit, edema, tears accumulated under the torsion of slicing preparations; it
is then also probable that we dismissed blood vessels, mistaking them for the aforemen-
tioned. Similarly, for the Photoshop Selection tool method, villi which were separate
(connected) may have been traced as connected (separate). The best of care was taken
to distinguish this by the use of trophoblastic cover, but many visually ambiguous cases
presented themselves.

• Using the human hand as a tracing tool is naturally inaccurate for the Photoshop Selec-
tion tool method. Although the researcher who performed all the Photoshop Selection
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tool measurements has lifelong drawing and illustration experience, including three years
of digital pen-and-tablet illustration experience, simply the blood pressure of a heart-
beat can shake the hand, subtracting or adding pixels in the process. Add to this the
numerous factors affecting human motor dexterity or eye-hand coordination (caffeine
intake, eye-fatigue, etc.) and the list grows relatively more exhaustive.

• The fact that villi with edges extending off the image border were excluded in the
Photoshop Selection tool method and the blood vessel counting method may skew the
data in favor of a larger distribution of smaller area villi. The very reason a villi may
extend off the edge is that it is relatively large.

• The fact that villi with edges extending off the image border were included in the MAT-
LAB measurement method skews the data toward larger total area measurements than
would be obtained with the Photoshop Selection tool method. Therefore it prevents
comparison of area measurements between those data sets (automated vs. by-hand).

• The varying number of images representing one placenta:
(1) Statistically favors placentas with several images for distributions of blood vessel

counts and circularity. Since the average of these measurements over a placenta’s
image set was taken to represent the placenta (rationale to follow), there was a
greater sample size of total measurements. Thus the measurement distributions of
placentas with fewer images are vulnerable to outliers and their distribution patterns
are weaker.

(2) Statistically may affect total area measurements from the MATLAB measured image
sets.

• We received no information on the length scales of any images; hence all units of measure
and data are given in pixels or adjusted to be dimensionless (rationale and method to
follow). We also have no data on whether separate quadrant images are zoomed out or
in relative to their set, and cannot completely trust the assumption that they are the
same resolution.

• In the MATLAB measurement method, for the MATLAB-cleaned images, some maternal
blood cells connected to villi by a sufficiently large number of pixels were recognized as
being part of the villi; therefore maternal blood cells may have been included in this
image set’s total area measurement, adding to the area magnitude.

• For the MATLAB-cleaned images, shapes too small to meet a threshold, including blood
cells and smaller villi, were deleted from the image in the cleaning process. The intention
was to delete blood cells that were a pink similar to the color of the villi, but some villi
also fell below threshold.

• An aggregate of the above two problems, some dense clusters of red blood cells that were
a pink close to the color of the villi were both recognized as a single object, and was too
large to be deleted by size thresholding. These cases erroneously increase the total area
magnitudes.

• Some images were notably difficult to clean and segment automatically, since the pla-
centas were insufficiently drained of blood, or because inflammation or pathological
congestion was present. Consequently, there were a relatively substantial amount of
images possessing a mixture of problems related to blood clusters, blood/villi confusion,
and villi surrounding blood clusters; they have the associated errors as well.

3.2. Eliminated Variables. Initially we wished to calculate circularity using automatically
segmented and measured images, but several problems mentioned above prevented this from
being reliable. Most notable is the simplicity of the MATLAB measurement algorithm; subse-
quently it could not perform well on many slides with inadequate blood drainage. The splitting
of the images and inclusion of the edge villi also prevented the perimeter data from MATLAB-
measured images from being viable for any medical analysis. Consequently, due to the large
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Cleaning Method Measurement Method Measurements Data Transformation Variable
P.S. MATLAB Total V.A. Total V.A./Image A. Fractional A.
P.S. MATLAB Total V.P. None None
MATLAB MATLAB Total V.A. Total V.A./Image A. Fractional A.
MATLAB MATLAB Total V.P. None None
None P.S. Sel. Tool A. Sum over images A.
None P.S. Sel. Tool P. Sum over images P.
None P.S. Sel. Tool Circ. Avg. over images Avg. Circ.
None P.S. Count Tool # of BVs Avg. over images BV Density

Table 1. How the measurements were transformed into variables. Abbrevia-
tions: P.S. = Photoshop, A. = Area, P. = Perimeter, V. = Villi, Sel. = Selection,
BV = Blood Vessel, Avg. = Average, Circ. = Circularity.

Figure 9. Three cases of differing villi shapes. From left to right: #1632, #1657, #2523.

differences in what parts of the images were measured and how, there is no objective way to
compare the hand-traced Photoshop data to either automatically segmented and measured data
sets.

We have, however, provided comparison of MATLAB and Photoshop cleaning methods to
each other, since they were both measured using the same algorithm. To provide a variety of
perspective on the performance of the cleaning methods, we have included perimeter in the
Error Analysis section.

3.3. Data Transformation. Table 1 describes the transformation of data to compensate for
some of the error or inaccuracy present in the data set or measurement methods.

3.4. Distribution of Data Sets.

3.4.1. Hand-Traced Data Comparisons Among Placentas. The hand-traced data, collected using
the Photoshop Selection tool method, offers a somewhat reliable glimpse into the shapes of
villi present in a cross-sectional slide of a placenta. Three placentas were chosen for analysis
and comparison (see Figure 9): Placentas #1632, #1657, and #2523. With the best of our
knowledge and ability learned from [3, 4], we selected #1632 to represent the Mature case of
averagely sized and shaped villi; #1657 was selected to represent an Immature case, with villi
of relatively larger shape; and #2523 represented the Hypermature case, with many relatively
small villi [3].

See figures 9, 10, 11, 12. Each unit in the distributions represents the measurement of one
villus. Thus the number atop each graph’s bars represents the number of villi falling into the
indicated range (or “bin”) for that placenta. Since by nature the Photoshop method recorded
one measurement per villus, for the distribution we included all measurements for one placenta;
that is, all villi in all images representing the placenta. Each of these placenta had several
images representing it. Note: the bin ranges for the distributions are different for each placenta.
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Figure 10. Perimeter distributions for the Photoshop Selection tool measure-
ments of placentas #1632, #1657, and #2523.

Perimeter
50% 95%

#1632 930 2847
#1657 313-1600 2889
#2523 211 622

Table 2. Benchmarks for “half” (50%) and “most” (95%) cumulative distribu-
tion of perimeter size.

Figure 11. Area distributions for the Photoshop Selection tool measurements
of placentas #1632, #1657, and #2523.

The cumulative percentage lines show at each range what percentage of the villi are at a pixel
value below that range. In comparing placentas this becomes a useful tool, since we can see
what perimeter, size, and proportions that half (50%) and most (95%) villi are. These results
are summarized in each of the tables 2, 3, 4, where all values given are in units of pixels.

Thus #1632 and #1657 are roughly the same in villi perimeter distribution, whereas the
perimeters of #2523 are smaller on average.
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Area
50% 95%

#1632 5928-67647 252805
#1657 5995-146332 286663
#2523 362-7696 15029

Table 3. Benchmarks for “half” (50%) and “most” (95%) cumulative distribu-
tion of area size.

Figure 12. Circularity distributions for the Photoshop Selection tool measure-
ments of placentas #1632, #1657, and #2523.

Circularity
50% 95%

#1632 0.761327 > 0.762
#1657 0.727548 > 0.728
#2523 0.717909 > 0.857

Table 4. Benchmarks for “half” (50%) and “most” (95%) cumulative distribu-
tion of circularity value.

Similar to the case with perimeter, the area distributions of the villi of #1632 and #1657 at
95% fall into roughly the same range. However at 50%, there is a difference in the upper end
of the range for these placenta; the range given for #1657 is roughly double the pixel range for
#1632. It is not clear if this necessarily implies that half the villi in #1657 are larger, as the
bins were created at regular intervals, and the sizes could possibly be identical despite the bin
labels. #2523 has markedly smaller villi area than the other two placentas.

Whereas the perimeter and area distributions followed roughly the same cumulative percent-
age line segment pattern, resembling perhaps a logarithmic function, that of the circularity
resembles an exponential curve. For circularity, the greatest number of villi in each graph are
at the higher end of the bin range, above a circularity of 0.762, 0.728, and 0.857, for placentas
#1632, #1657, and #2523, respectively. The percent differences between each value pair are
2.3%, 5.9%, and 8.1%. This may confirm the noticeable visual differences between the images
in Figure 9, especially confirming #2523 as relatively more mature than #1657.
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Figure 13. Comparison of the cumulative percentages of circularity for placentas
#2523, #1657, #1632. Note the similar pattern the line segments follow.

The patterns of cumulative distribution lines create almost the same shape in each type of
measurement, despite the differences in size and number of shapes traced in total. Below is
a comparison chart between the cumulative percent distributions of circularity for the three
placentas. Since circularity is a proportion which occupies a normalized numerical range, as
opposed to a measurement like area which is patently different, it gives a way to compare the
images despite dimensional measurements.

The similarity of the pattern of cumulative percentage is striking. Even though an 8.1%
difference was detected between the circularity proportion of hypermature #2523 and immature
#1657, figure 13 asserts that the image pair is still 91.9% similar.

It is difficult to conclude very statistically strong results from this analysis, for several reasons.
In the absence of information about the microscopic resolution of the images, we have (poorly)
assumed that each image is at the same zoom. If this were not the case, the differences in villi
measurements we detected might not necessarily have to be disregarded; if we did have an image
with a smaller zoom or smaller villi, there is not a fundamental difference in area or perimeter,
only pixel measurement accuracy. It is more difficult to say whether zoom can distort the
circularity. The need to disregard zoomed images may be indicated by the relative similarity of
circularities; Further study on this issue would have to be conducted for confirmation, comparing
zoomed and hypermature images.

It is also a problem inherent in the definition of hypermaturity to have a greater number of
villi, whereas in immature cases the villi are far fewer and larger. For the same zoom value,
this results in a greater “samples size” for a hypermature placenta image, and hence a smoother
distribution. By extension, large villi in immature or mature images that are split from a
full-size image tend to have more villi that can breach image edges and be disregarded.

Despite the problems, we believe circularity can be indicated as a possible measurement in
future studies with a better data set. First, a diagnosis of chronic villitus, slightly preterm
delivery (257 days), and low birth weight (1824g) were present in case #2523, and analysis
detected a distribution of higher circularity values. This is consistent with what was expected
from a hypermature placenta (refer back to figure 1), namely a relatively larger amount of
terminal villi. This type of villus tends to be small, round and “grapelike” [3]. We confirm that
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we have detected a relatively large quantity of small, relatively round shapes for a hypermature
case.

In contrast, cases #1632 and #1657 were from infants of normal-weight and gestational age
at delivery, without any glaring pathology present in data. Their villi also appear similar to
each other, which was mostly confirmed by measurement, yet different compared to #2523,
again confirmed by analysis of the distributions.

Figure 14. Histogram distributions of the fractional areas (see section 3.3) of
the images cleaned in MATLAB (left) and Photoshop CS5 (right). Cumulative
percentages are displayed.

3.5. Comparison of Fractional Area between Photoshop-Cleaned and MATLAB-
Cleaned Images. As discussed in section 3.3, we needed to find a way to use the areas obtained
by automatic measurement in MATLAB to represent an aspect of placental maturity. Since we
previously detected a difference in villi area distribution between extreme cases, we compare
the distribution of fractional area for all placentas.

The fractional area is a dimensionless measure of how much of a slide is occupied by villi.
Therefore it gives insight into both how well each algorithm performed, and in the case of
the Photoshop-cleaned images, provides a measure of fractional area which is better-suited for
analysis. The latter analysis for placentas is performed in this section; see the former evaluation
of algorithm vs. software methods in section 3.7, Error Analysis. The distinction between the
area comparisons looked at in the previous section are per placenta; the section deals with total
area measurements per image.

In the Photoshop histogram from figure 14, the cumulative percentage lines create a nearly
straight line, and there is a roughly equal frequency across the entire range. It is difficult to
gauge what an even distribution is supposed to mean, in terms of clinical significance. From
available data, the placenta with the lowest fractional area (0.518) was #2723, from a normal-
weight (3278g), term (39 weeks) infant; the highest fractional area of 0.971 from case #3042
was from a slightly high birth weight infant (4006g) which was also aged 39 weeks at delivery.
A slightly preterm (258 days or barely under 37 weeks) case presented a fractional area of 0.829,
and an underweight (1904g) but term delivery case presented with fractional area 0.650. In
figure 15, there is erratic spread of data points and low R2 values.
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Figure 15. Linear regression using the Fractional Area variable versus medical variables.

Figure 16. (a) Scatterplot of the average number of blood vessels per slide vs.
birth weight. (b) Scatterplot of the total number of blood vessels per image vs.
birth weight.

Therefore the fractional area is not a reliable measurement for use in diagnosis; however,
rather than the admittedly low sample size of 27, some images could not be processed. Three
were left out of the fractional area histograms (see bar labels in figure 14). The data set
being small may have factored in to fractional area having little correlation with medical data.
However, the fractional area is still vulnerable to the microscopic resolutions of the images.

3.6. Relationships between Medical Variables and Blood Vessel Measurements.

3.6.1. Linear Regression. In order to determine if there was a trend between the average number
of blood vessels per slide and the birth weight of the newborns tested, the regression line and
its R2 value were calculated using excel. Figure 16 (a) is the scatter plot corresponding to the
relationship between the average number of blood vessels (dependant variable) and the birth
weight in grams (independent variable). Although the calculated regression line (y = 8.3151x
+ 2849.6) appears to fairly fit the data, the coefficient of determination R2 was only 0.0745,
implying that approximately seven percent of the variation in the birth weight can be explained
by the average number of blood vessels per slide. Because this regression model did not fit the
data well, we went on to comparing the total number of blood vessels in a slide and the birth
weight (grams). This resulted in a regression line of y = -1.1283x + 3777 with R2 = 0.0756. By
using the total number of blood vessels, instead of the average number per slide, the regression
line indicates that as the number of blood vessels increases the birth weight decreases, whereas
by using the average number of blood vessels the slope of the regression line was positive (Figure
16 (b)).
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Figure 17. (a) Scatterplot of the average number of blood vessels per slide vs.
β. (b) Scatterplot of the total number of blood vessels per image vs. β.

Figure 18. (a) Scatterplot of the average number of blood vessels per slide vs.
gestational age. (b) Scatterplot of the total number of blood vessels per image
vs. gestational age.

The average number of blood vessels was compared to β (≈ log PM/log FM) in order to
determine if a trend could be detected [6]. Figure 17 (a) shows the scatter plot of these two
variables. The regression line (y = 5e−05x + 0.7542) and R2 value (0.0065) indicates that
outcomes will not be well predicted by this model. These results were compared to the total
number of blood vessels vs. β and its regression line and R2 value were determined (Figure 17
(b)). Although the value R2= 0.0968 improved, the regression line (y = -3E-05x + 0.7642) is
still not a good model for the data.

Because we predicted the number of blood vessels was related to the gestational age of a fetus,
the average number of blood vessels per slide was compared to the gestational age. Figure 18
show the scatter plot of the average number of blood vessels (independent variable) and the
gestation age in days (dependant variable). For this pair of data the regression line is y =
0.0166x + 273.31 and R2 = 0.0047. This model also shows a poor trend, so once again the total
number of blood vessels was graphed against the gestational age and a scatter plot was created.
Figure 18 shows that the new regression line is y = 0.0063x + 273.14 with an improved value
of R2 = 0.0379. Although R2 improved it is still too low to be considered significant.

Table 5 summarizes the our calculations comparing the average number of blood vessels per
slide to birth weight, β, and gestational age. Table 6 also summarizes our calculations using
the total number of blood vessels per image. We believe our results using the average number
of blood vessels and the total numbers of blood vessels are so different because when an image
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Variable Linear Regression Line R2

Birth Weight y = 8.3151x + 2849.6 R2 = 0.0745
β y = 5e−05x + 0.7542 R2 =0.0065
Gestational Age y = 0.0166x + 273.31 R2 =0.0047

Table 5. This table shows the regression line and R2 value for the average num-
ber of blood vessels per slide and each of the variables on the table.

Variable Linear Regression Line R2

Birth Weight y = -1.1283x + 3777 R2 = 0.0756
β y = -3e−05x + 0.7642 R2 =0.0968
Gestational Age y = -3e−05x + 0.7642 R2 = 0.0379

Table 6. This table shows the regression line and R2 value for the total number
of blood vessels per image and each of the variables on the table.

Figure 19. Scatter-plot of the average circularity for all villi in a given placenta
vs. the average blood vessels per slide.

is split into quadrants the density of blood vessels may be different in each quadrant. Also,
since partial villi were disregarded when counting vessels, when vessels of the slides were added
together there are many villi that are not taken into account. Detecting a trend is also difficult
because we are only comparing two factors at a time when in fact, the socioeconomic status,
ethnicity, or number of previous birth of the mother might make a difference in our data [6, 7, 2].
Because we had a small sample size (27 images) the sampling error in our data is large compared
to the sampling error if our sample size had been bigger.

3.6.2. Correlations. We also sought to find a correlation between the average number of blood
vessels per slide and the circularity variable from the hand-traced data. Figure 19 shows the
scatter plot for the average number of blood vessels per slide vs. average circularity.

By using Excel’s CORREL function, the correlation between these pairs of data were calcu-
lated. The correlation between the average number of blood vessels and average circularity was
only 0.257858578 indicating there is a small degree of dependence between these two variables;
this is still a relatively large correlation compared to other data trends we looked at with linear
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Figure 20. Comparison of Photoshop and MATLAB images of slide 1479 1.

Color Red Pink Purple Total Perimeter
Min Error 87 868 0 32686 535
Max Error 1134717 114105 14684 1389373 24661

Table 7. Minimum and Maximum errors in comparing the MATLAB-cleaning
algorithm and the Photoshop-cleaning method. All values are measured in pixels.

Figure 21. Images of a good segmentation result, #1737.

regression. The reason may be because human-powered methods are able to differentiate be-
tween joined villi and edge-villi. Because we had a small sample size, the outliers had a larger
distorting effect on the correlation.

3.7. Comparison of MATLAB & Photoshop Image Cleaning Through Error Analy-
sis. In order to make a comparison as to how accurate our MATLAB-cleaning algorithm was,
we needed something to compare to. Using Photoshop, we were able to make a “perfectly”
cleaned image and used this with the same color markers used in the algorithm to compare our
results.

As seen in this Photoshop-cleaned image (figure 20) the results are similar to the one obtained
via MATLAB beside it, but it is not a perfect match. The discrepancies in the image comes
from the blood we want to remove being too close to the villi, or being in one large group. Since
the algorithm relies on color markers, if an single cell near a villus is connected to it by even
one pixel, then the algorithm thinks that the cells are part of the villi and will not remove it.
Also If the cells we want to remove are in one big group, because of the way we remove small
objects, the code will not recognize that group as something we wish to remove; it will interpret
the cluster as a large object and fail to delete it. Table 7 shows the minimum and maximum
errors for the different sets of images.
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Figure 22. Images of a poor segmentation result, #1657.

Figure 23. Images of a very poor segmentation result, #2870.

Original images that do not have many maternal blood cells achieve very good results (fig-
ure 21), while images that have many cells in the intervillous space (see figure 22) are not
cleaned very much (figure 23).

Although figure 20 shows that the two images are similar, the table implies that there is a big
difference between minimum and maximum error. For consistent results, the difference between
the maximum and minimum error must be minimized. Figures 21, 22, and 23 show the cleaning
results for placentas #1737, #1657, and #2870 (respectively) between the original, MATLAB,
and Photoshop images (from left to right).

4. Future Work

Despite its usefulness for gathering data, the hand-tracing and hand-counting methods for
gathering circularity and blood vessel data is not a practical method. They require too much
time of a skilled histologist in order to assure accuracy. However, our simplistic algorithm also
performed segmentation poorly and was not sophisticated enough to return useful variables.

If more time had been available, our group would have searched for a way to automatically
count the blood vessels in each slide using MATLAB. We would have then been able to compare
our MATLAB results to our Photoshop results. This would have taken a long time since blood
vessels are either pink or white on the slides and distinguishing between different shades of pink
is a difficult task.

Although our segmentation results were good for some images, it is still not a viable option
for future studies, mainly because our algorithm relies of predetermined color markers. All of
the automated algorithms we tried also failed to provide reliable results. Another method we
would like to try would be to develop a way to get the individual color markers per image; this
may obtain more accurate results. We would also like to find a more consistent way of removing
large clusters of maternal blood cells that our code could not remove.

We also limited ourselves to using MATLAB for this project, and we would like to try other
programs that are available such as C++ and Java. Although these codes can be rewritten to
match any language, we feel that using a combination of different programs can improve our
results.
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Even with the ideal data set of full-size placental histology images for every mother-infant-
placenta variable set (1277 in total), along with more information about the conditions of the
study and slide resolutions, the problem of creating an algorithm that is sufficiently sophisticated
and accurate is daunting. Supposing we had more time, resources, and images, it is possible
to, if not develop software to do so, use Photoshop or another image analysis software suite,
to take a definitive set of shape factor measurements. The larger sample set would facilitate
more sophisticated exploratory data analysis techniques such as principal component analysis,
cluster analysis, or multivariate regression to uncover placental maturity and medical variables.
With the hypotheses this data mining suggests, other experiments could be designed that could
independently confirm the suspicions using a different sample set.

Ultimately, the idea behind studying placental maturity is to construct a quantitative measure
of placental development which has predictive power for an infant entering the world. The degree
to which the placenta’s maturity is predictive for the long-term health of the infant is established
[3]. Benchmarks for fetal physical and neurological development are already established and are
in more frequent use. In order to create a placental maturity reference range with quantitative
categorical distinctions, large amounts of data must be collected, then processed. A sufficiently
sophisticated piece of software might accomplish the data collection, then be used again on a
fresh slide, in order to compare it to the collected data.

5. Conclusions

We cannot extrapolate any significant generalizations using a small sample set and and mea-
surement methods with compounding inaccuracy to the population at large. We can, however,
report mild success in connecting images that have been given a categorical value of mature,
hypermature, or immature, with relative differences in the distribution of the geometric prop-
erties of villi. Of all analysis performed on data, this provides the most promise in regards to
the medical value of the information. However, a less-work intensive approach to measuring
villi must be developed before it is viable to study their shape factors with large sample size or
image size. Specifically, a more complex, robust collection of algorithms must be developed to
differentiate between villi, account for all instances of fibrin deposits, blood vessels and maternal
blood cells, and measure the shape factors desired.

The linear regression models that were created comparing the average number of blood vessels
to the birth weight, β, and gestational age resulted in very low R2 values. This indicates that
a very low percentage of the variation in the three variables we tested could be explained by
average number of blood vessels per slide. The model that has the highest R2 value was the
linear regression line for the birth weight, but it is still not significant enough to indicate a
trend. Thus we detected no linear trends in the data set between number of blood vessels and
any medical variable.

The correlation between the average number of blood vessels and the average circularity per
placenta was low but not completely insignificant, a relationship may possibly exist.

Due to the complexity of some of the images, the segmentation and measurement results
from MATLAB vary significantly from that of Photoshop. And although we had some positive
results, the disadvantages of the algorithm outweighed the advantages. Predetermined color
markers based on an average of all images cannot be used as a standard value to compare
to simply because the variation in color between images is too great. The method in which
maternal blood cells are removed is crude. Simply removing small areas would not work for
hypermature placentas that may contain small villi. And finally, this method cannot remove
cells that are attached to the walls of the villi simply because there is no way to differentiate
between the two, unlike Photoshop, where the user can, by hand, remove them.

The main advantages of using Photoshop cleaning are being able to remove elements with
human judgment and the ability to separate the villi. These result in a better measurement of
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the area and perimeter than the MATLAB-segmented images. As previously mentioned with
regards to the Selection tool method, human-operated processes are time consuming.
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Appendix A. MATLAB Source Code

A.1. Image Segmentation: “Modeling Project”.

%Segmentation of the 4 primary colors

pathname = ’.\histology images\’;

dirlist = dir([pathname ’*.tif’]);

for x = 1:length(dirlist)

images{x} = imread([pathname dirlist(x).name]);

end

for i = 1:length(images{x})

name = dirlist(i).name;

str = sprintf(’Processing file %s’,name);

disp(str)

%Get images and color images ready

I = images{i};

I = im2double(I);

Iorig = I;

Igrayorig = rgb2gray(I);

[n,m] = size(Igrayorig);

%Primary color markers

red = [1 .5 .6];

pink = [1 .7 .8];

blue = [.6 .4 .65];

white = [1 1 1];

black = [0 0 0];

%Color simplification and segmentation

for k = 1:n

for j = 1:m

J = [I(k,j,1) I(k,j,2) I(k,j,3)];

r = norm(J - red);

p = norm(J - pink);



24 GREFE ET AL.

b = norm(J - blue);

w = norm(J - white);

color = [r p b w];

change = min(color);

if change == r

I(k,j,:) = red;

Ired(k,j,:) = red;

end

if change == p

I(k,j,:) = pink;

Ipink(k,j,:) = pink;

end

if change == b

I(k,j,:) = blue;

Iblue(k,j,:) = blue;

end

if change == w

I(k,j,:) = white;

end

end

end

Iseg = I;

Igray = rgb2gray(Iseg);

%Grayscale image to black and white

for k = 1:n

for j = 1:m

if Igray(k,j) == 1

Igray(k,j) = 0;

else

Igray(k,j) = 1;

end

end

end

%Removing small areas

Iadd = imadd(Ipink,Iblue);

Iadd = imadd(Iadd,Ired);

for k = 1:n

for j = 1:m

if Iadd(k,j) == 0

Iaddbw(k,j) = 0;

else

Iaddbw(k,j) = 1;

end

end

end

area = bwarea(Iaddbw);

area = int32(.004*area);

area = double(area);
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Iadd2 = bwareaopen(Iaddbw,area);

%Creating Mask of cropped image

for k = 1:n

for j = 1:m

if Iadd2(k,j) == 0

Iseg(k,j,:) = black;

end

end

end

%Segmentation of cropped image

for k = 1:n

for j = 1:m

J = [Iseg(k,j,1) Iseg(k,j,2) Iseg(k,j,3)];

if norm(J-red) == 0

Ired(k,j,:) = red;

else

Ired(k,j,:) = black;

end

if norm(J-pink) == 0

Ipink(k,j,:) = pink;

else

Ipink(k,j,:) = black;

end

if norm(J-blue) == 0

Iblue(k,j,:) = blue;

else

Iblue(k,j,:) = black;

end

end

end

%strname = sprintf(’%s’,name);

%imwrite(Iseg,strname,’bmp’);

end

A.2. Image Measurement: “Find Areas;”

clear all

%path to the directory of the images

dirname = ’./images2process’;

imdir = dir(dirname);

%determines how many images to process

nI = length(imdir)-2;

D = cell(1,nI);

mI = nI+2;

x = 1;

%loop to process images to determine areas and perimeter for each image

for i = 3:mI

fname = imdir(i).name;
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disp([num2str(i-2) ’ of ’ num2str(nI) ’ processing image ’ fname ’ ’ ]);

%changes directory to where images are located

cd ./images2process

%reads image etc

I = imread(fname);

I = im2double(I);

Iorig = I;

Igray = rgb2gray(I);

[n,m] = size(Igray);

%preset colors

red = [1 .5 .6];

pink = [1 .7 .8];

blue = [.6 .4 .65];

white = [1 1 1];

black = [0 0 0];

%loop to determine pixel’s colors

for i = 1:n

for j = 1:m

J = [I(i,j,1) I(i,j,2) I(i,j,3)];

r = norm(J - red);

p = norm(J - pink);

b = norm(J - blue);

w = norm(J - white);

bk = norm(J - black);

color = [r p b w bk];

change = min(color);

if change == r

I(i,j,:) = red;

end

if change == p

I(i,j,:) = pink;

end

if change == b

I(i,j,:) = blue;

end

if change == bk

I(i,j,:) = black;

end

end

end

Iseg = double(I);

%changes to previous directory

cd ../..

Ired = Iseg;

Ipink = Iseg;

Iblue = Iseg;

Iwhite = Iseg;
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for i = 1:n

for j = 1:m

J = [Iseg(i,j,1) Iseg(i,j,2) Iseg(i,j,3)];

if norm(J-pink) == 0

Ipink(i,j,:) = white;

else

Ipink(i,j,:) = 0;

end

if norm(J-red) == 0

Ired(i,j,:) = white;

else

Ired(i,j,:) = 0;

end

if norm(J-blue) == 0

Iblue(i,j,:) = white;

else

Iblue(i,j,:) = 0;

end

if norm(J-white) == 0

Iwhite(i,j,:) = white;

else

Iwhite(i,j,:) = white;

end

end

end

Ipink = im2bw(Ipink);

Ired = im2bw(Ired);

Iblue = im2bw(Iblue);

Pink = round(bwarea(Ipink));

Red = round(bwarea(Ired));

Blue = round(bwarea(Iblue));

TArea = imadd(Ipink, Ired);

Iblue = double(Iblue);

TArea = imadd(TArea, Iblue);

TArea2 = imfill(TArea,’holes’);

TArea2 = bwareaopen(TArea2, 25);

%Tests if Total Area of villi equals Total Area of image if it does

%then function imfill() will not be used to calculate Total Area of

%villi. This will only be used for extreme cases where images are

%nearly completely pink, red and blue. We only had 2 out of 95

%of our images that needed imfill not to be used to calculate total

%area and perimeter

Test = bwarea(TArea2);

Iwhite = im2bw(Iwhite);

Awhite = round(bwarea(Iwhite));
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if Test == Awhite

TA = round(bwarea(TArea));

P = bwperim(TArea);

else

TA = round(bwarea(TArea2));

P = bwperim(TArea2);

end

Perimeter = round(bwarea(P));

Pink = round(bwarea(Ipink));

Red = round(bwarea(Ired));

Blue = round(bwarea(Iblue));

M(x,1) = TA;

M(x,2) = Perimeter;

M(x,3) = Pink;

M(x,4) = Red;

M(x,5) = Blue;

x=x+1;

i = i+1;

end

%Displays Total Area, Perimeter, Pink area, Red area, Blue area

disp (M);

disp(’ ’);

disp(’Total Area, Perimeter, Pink area, Red area, Blue area:’);
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