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Abstract. The objective of this project was to determine if the placental weight/ratio is
affected by various maternal variables such as maternal age, BMI, gestational diabetes, and race
using various mathematical approaches. A study was performed on 1229 mothers who were of
different age groups, five different races, various BMI, and approximately 4% had gestational
diabetes. We analyzed each of these four variables separately to see if there was any relationship
between each of the variables and the placental weight or placental ratio statistically. We
also studied whether the relationships would affect the placenta by a combination of two or
more of these variables using K-means method, Principal Component Analysis and Logistic
Regression. The use of all these mathematical approaches provided that out of the four maternal
characteristics, maternal age and BMI had effects on placental weight and placental ratio. Our
findings indicate that the results were statistically significant, but overall too weak to be used
for future predictions.

1. Introduction

The placenta plays a major role in maintaining a healthy pregnancy. The placenta works as a
trading post between the mother’s and the baby’s blood supply, oxygen supply, and nutrients.
Therefore, researching the placenta produces vital information for determining the development
of the fetus. A possible placental factor that reflects the placental development is its weight.
The weight of the placenta can be an indicator of any abnormalities that may be happening as
the fetus is growing. Several factors can affect the weight of the placenta, causing the weight
to be low, normal, or high. In this study, we decided to analyze the maternal characteristics
that were provided to us to see if they had any significant effect on placental weight and
hence, provide useful information that can be used by medical experts to help make informed
decisions regarding factors influencing the placental health. The maternal characteristics that
are analyzed in this study are age, BMI, gestational diabetes, and race.

There is research that allows us to see how these maternal characteristics relate to the placenta
in various ways. For purposes of this study we decided to follow research directions that were
very relevant to the connections between the placenta weight and placental ratio and our chosen
maternal characteristics. Placental ratio is defined as the ratio of the placenta weight to the
baby’s birth weight. Research shows that mothers that were diagnosed with gestational diabetes
at a certain gestational age and had a glucose treatment did have higher placental weight/ratios
compared to those mothers that did not get the treatment [6]. Similarly, it is noted that African
Americans had a growth restriction on placental weight due to the mothers’ pre-pregnancy BMI
and the weight gain during the term [3]. Furthermore, research allows us to see that the mother’s
age might also have an impact on the weight of the existing placenta. Mothers who are aged
25 and under tend to have normal to low placenta weights while mothers over 25 years tend to
have high placental weights [2][7]. Finally, Body Mass Index has also been noted to have a more
significant effect on placental ratio. Maternal obesity is due to an increase exposure to maternal
glucocorticoids which determine the placental ratio [5]. In a research done by Perry, Beevers,
and Bareford, the study noted that ”lower gestational age at birth and higher maternal body
mass index were the only significant independent predictors of placenta ratio...Gestational age
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at delivery and body mass index were also both positively associated with placental weight and
birth weight”[5].

In determining what maternal characteristics have an impact on the placenta and hence the
development of the fetus, the goal is to help medical professionals make better decisions in a
timely manner and allow mothers to better care for their newborn.

2. Research Methods

1229 mothers out of the total 2006 were studied for our specific research. This number of
mothers was chosen by those having valid data in all of four maternal characteristics chosen for
this study. Any data that had incorrect values or missing data were discarded. The maternal
characteristics that were chosen had the following characteristics:

• Maternal Age: The age of the mothers was recorded in years. The ages ranged from 16
to 46 years.

• Mothers Race: The mothers in our data were grouped into five different races. These
races were then coded with the values 1 − 5. (White = 1, African American = 2,
American Indian = 3, Asian or Pacific Islander = 4, and Other = 5).

• Maternal BMI: The mothers BMI was recorded in kilograms per meters squared ( kg
m2 ).

• Gestational Diabetes: The mothers gestational diabetes was recorded with two values, 0
and 1. 0 represented that the mother did not have gestational diabetes and 1 represented
that the mother had gestational diabetes.

2.1. Statistical Analysis. In our first approach in this research study, we decided to study
our data using linear regression. Our goal for using linear regression was to be able to model a
relationship between our maternal characteristics and the placental weight or ratio by looking
specifically at three things:

(1) A line fitted to the data set
(2) The coefficient of determination, R2

(3) The F-significance value

Finding a good fit would suggest that a trend exists in the data. The coefficient of determination
determines how well future outcomes are likely to be predicted by the statistical model. It
ranges from 0 to 1, where R2 = 1 is the most desirable value. The F-significance value provides
the probability that the variables that are being compared have a linear regression due to
randomness. An F-significance value close to 0 is the most desirable. An example of a perfect
line of fit is shown in Figure 1.

Figure 1. Example of a perfect line fit; R2=1, F-significance=0
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2.2. Principal Component Analysis. Principal Component Analysis (PCA) is a data anal-
ysis technique that specializes in the organization of multivariable data sets. These data sets,
perhaps relating a dependent variable to several independent variables, can be difficult to visu-
alize graphically in that they exist in high-dimensional space (i.e., more than three dimensions,
with each variable representing a single dimension). With this constraint it is generally unre-
alistic to attempt to graph a multivariable data set composed of much more than two or three
variables. The traditional method of graphing each independent variable separately with the
dependent variable is always available, but correlations existing between multiple variables can
be overlooked or completely missed with this method.

PCA solves this problem by translating the variables into their principal components. For
each variable in the data set of interest, a single principal component is generated, with each
principal component accounting for some of the variance of the original variables. However,
the utility of PCA is not that each variable is now represented by yet another variable now
called a principal component, but rather that the majority of variance of the original variables
is now represented by just a few of the principal components, thereby reducing the amount of
variables to work with and consequently making it feasible to graphically represent the original
data set. In this way, PCA is sometimes referred to as a variable reduction procedure. Notice
that although the variance in the original variables from the original data set is conserved in the
principal components, it is not uniformly distributed through all of them, and that in fact the
”first” principal component usually carries most of the variance (i.e., most of the information
about the data set), the ”second” principal component carries less of the variance but usually
still a significant amount, and then less and less variance is carried over into the remaining
principal components.

Generally, the first few principal components are enough to study the original data set and
the remaining principal components are not used. The loss of information by dismissing the
remaining principal components is negligible, and indeed if it were not, one could always include
one more principal component if information loss was a worry. In this way, with ”most” of the
information from the original variables being conserved, PCA presents itself as a powerful data
analysis tool for simplifying multivariable data sets.

When using PCA, however, one should be vigilant of the types of data being used. For
example, suppose a data set contains temperature, time of day, time of year, and altitude.
Running PCA through the data set with the temperature in Fahrenheit, and then running it
again with the temperature in Celsius will not necessarily give the same results. Furthermore,
because the data has not been normalized, there is a possibility that the principal components
will not be independent causing the results of the PCA to become skewed. By normalizing the
data set, the independence of the principal components is made sure, and this guarantees that
no information will be represented more than once in more than one principal component. The
general procedure for Principal Component Analysis is as follows:

(1) Create data set
(2) Normalize data set forming the normalized matrix
(3) Find the covariance matrix of the normalized matrix
(4) Find eigenvalues and eigenvectors of the covariance matrix
(5) Find the significant principal components by finding the eigenvectors with the highest

eigenvalues
(6) Form a ”feature” matrix by using the chosen eigenvectors as columns, and put in order

from highest corresponding eigenvalue to lowest corresponding eigenvalue
(7) final result matrix=(feature matrix)T (normalized matrix)T

The final result matrix is the original data but only in respect to the eigenvectors we chose.
Again, though not all of the information from the original data set is conserved, the important
majority of it is carried over into the final result matrix leaving the user with a matrix closely



4 DIANA AMADOR, ANDREW DEMPSEY, SAMANTHA GODFREY, AND PETER STEINHOFF

representing the original data and much easier to utilize due to variable reduction. This re-
duction of variables is the base usefulness of PCA and should be considered a potential tool
whenever one is studying a multivariable data set or any data set that is difficult to represent or
visualize. It is this reduction of variables which allows PCA to potentially illuminate unnoticed
structures or trends within a data set.

One final ability of PCA is having reduced the dimensionality of a data set through use of its
principal components, one can, with greater ease and less computation, now project this final
result matrix onto a lower-dimensional space that can be visualized and represented graphically.
This projection is a representation of the original data set and allows for ease of study of what
originally may have been a difficult set to examine. The reduction of variables coupled with this
lower-dimensional projection technique is what makes PCA both useful and popular in data
analysis.

2.3. K-means Clustering. K-means clustering is a well-known data analysis technique that
attempts to separate a set of observations into k clusters. It is an iterative process that hones
in on a set of centroids that minimizes the cumulative centroid-to-observation distance. Our
goal was to isolate a particular maternal characteristic that generated a well-defined partition
within a larger mash of maternal and placental characteristics. Over the course of our analysis,
we assigned various values to k. In each case considered, we designed k to match the numerical
range of the ”ground-truth” characteristic under examination. For example, when we looked at
ethnicity we used five clusters to correspond to the five distinct ethnicities found in the data
set. For other cases, we assigned the ground-truth to a different characteristic, say maternal
age, or BMI. Furthermore, each ground-truth variable could itself be segmented several different
ways. For example, maternal age could be separated into five-year blocks, or merely broken into
two groups separated by the median age. While there is an infinite number of ”ground-truth”
divisions possible, we chose arrangements that mirrored our other studies.

Once we had the ground-truth characteristic pinned down, we choose a limited number of
other, independent characteristics for the spatial dimensions. For each observation, we created
a vector with the dimension of the vector corresponding to the number of spatial characteristics
employed. The spatial characteristics were kept separate from the ground-truth characteristic,
which was used only for coloring. For instance, in Figure 2 the x-axis is maternal age, the y-axis
maternal BMI, and the z-axis placenta ratio. The ground-truth variable, ethnicity, is used to
designate the scatter points’ shape and color. While the example in Figure 2 contains three
spatial dimensions, we can easily create vectors that exist in any number of higher dimensional
spaces. For instance, in the case labeled Age 1.0, the details of which can be found in Table 1,
we employed five spatial dimensions. Age 1.0 proceeds to use maternal age for the ground-truth
clustering agent, separated into seven age blocks. Clearly, we cannot visualize this data, but
k-means clustering works just as well in hyperspace. In this case the seven cluster centroids
would themselves be five dimensional vectors.

Once we have our spatial dimensions defined and our ground-truth pinned down, we proceed
with k-means clustering. Matlab’s prepackaged algorithm generates a set of centroids. These
centroids mark the best-fit cluster center for each of the k clusters. For consistency, it is best to
start the iterative process from the same distribution of points. Another output of Matlab’s k-
means algorithm pairs each spatial vector with its closest cluster. Note that the default measure
of closeness is based on the Euclidean distance between the vector and each centroid in turn.
The observation’s vector is then nominally assigned to the cluster with the smallest distance to
centroid.

Within the vector space defined by the spatial characteristics, we have k clusters, located by
centroid, and the nominal cluster membership of each observation. Next we wish to give each
of the k clusters a unique ”identity” based on the same range of values found in the ground-
truth. We developed a method to derive this identity using the vector population of each



MATH 579 FINAL REPORT MODELING OF MEASURABLE MATERNAL ATTRIBUTES 5

Figure 2. Three spatial characteristics, with ethnicity for ground truth

cluster. Specifically, the unique identity of each cluster is based on the ground-truth coloring
of its members. For instance, if ethnicity is the ground-truth and the highest percentage of
whites are found in cluster A, then cluster A is now identified as the ”white cluster”. However,
a conflict may arise if the highest percentage of another ethnicity, say African Americans, is
also found in cluster A. This conflict occurs often since the observation population need not be
uniformly distributed among clusters. In a case like this, the first cluster takes the identity of
the highest percentage of ground-truth distribution overall. That particular cluster and color is
removed from consideration and the next highest distribution is found. In this way each cluster
is assigned a unique identity.

The real test of k-means clustering is to examine the clustering algorithm’s goodness-of-fit
relative to our ground-truth selection. To review, for each spatial vector we have a ground-truth
value and nominal cluster membership. Furthermore, each cluster has been assigned its own
identity based on the same ground-truth scale. We wish to compare the ground-truth of each
observation to the identity of its cluster of nominal membership. If the spatial characteristics
in question indeed possess strong separation relative to the ground-truth coloring, it will be
indicated through highly homogeneous clusters. For example, in the cases where we use ethnicity
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case name Age 1.0 Age 1.5
spatial dimensions 5 5

spatial characteristics maternal ethnicity,
maternal BMI, ges-
tational diabetes,
placenta weight,
birthweight, maternal
age

maternal ethnicity,
maternal BMI, ges-
tational diabetes,
placenta weight,
birthweight

ground truth maternal age maternal age
number of clusters k 7 7

g-of-f random assignment 17% 17%
g-of-f k-means R5 (Euclidean) 28% 28%

g-of-f k-means R5 (Mahalanobis) 27% 27%
Principal Components 3 2

g-of-f k-means PC-subspace (Euclidean) 22% 25%
g-of-f k-means PC-subspace (Mahalanobis) 21% 26%

Table 1. Cases with maternal age for ground-truth

as the ground-truth, we want to examine the membership of the identified white cluster. Within
this cluster, we check how much of the membership is actually white. We do the same for the
other four ethnicity clusters. We count a positive match if an observation’s ground-truth identity
matches the overall identity of its cluster, regardless of the value itself. We total the number of
positive matches and divide by the overall population to get a goodness-of-fit statistic for the
k-means clustering attempt. We can compare this goodness-of-fit to a situation where cluster
assignments are dealt randomly to the vectors. The idea being, if the selected data set clusters
nicely, most observations will match the identity of their nominal cluster. Consequently, the
positive match count will far exceed random matching. On the other hand, if the spatial data
is chaotic relative to the ground-truth, a cluster will more likely contain a heterogeneous mix
of ground-truth values. While each cluster still takes on an identity derived from a plurality of
its membership, it will also contain a large number of members with foreign ground-truth, thus
decreasing overall goodness-of-fit.

There is one more wrinkle to k-means clustering, namely, the distance metric used. The
distance between the individual observations and the cluster centroids, within the vector space,
is relative to the method of measurement. Conceivably, an observation can change what cluster
it is ”closest” to, depending on the way distance is measured. By default, our k-means clustering
method uses Euclidean distance, however there are other metrics to consider. The Mahalanobis
distance is defined by Dm(x) =

√
(x− µ)TS−1(x− µ) where x is the vector in question, µ is

the centroid of the cluster in question and S is the covariance matrix of the same cluster. The
motivation for using Mahalanobis over Euclidean is that Mahalanobis distance compensates
for the non-spherical distribution of the points within a cluster. When data, such as ours,
is derived from various maternal and placental characteristics, the different scaling employed
creates distortion. A cluster of points that might ordinarily take a spherical shape will be more
ellipsoidal. By incorporating the covariant matrix of the individual clusters, the Mahalanobis
distance adjusts for differences in scaling among the spatial coordinates. Keeping this in mind,
we tested the goodness-of-fit of our k-means clustering under both the Euclidean metric and the
Mahalanobis. For each observation, we compared the ground-truth of the vector to the identity
of the cluster of least distance.
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2.4. Logistic Regression. Logistic regression uses a binomial distributed set of data to predict
a success/fail outcome based on several variable combinations. It is a useful way of describing
the relationship between one or more independent variables and a binary response variable
expressed as a probability that has only two values.
Let R = eβ0+β1x1+β2x2+...+βpxp

then ln(R) = β0 + β1x1 + β2x2 + ...+ βpxp
where R=the odds ratio that a certain outcome will happen

xi=the independent variables; i = 1, 2, ..., p
βi=the logistic regression coefficients; i = 1, 2, ..., p

The odds ratio is the ratio of the probability that a certain event will happen to the probability
that it will not happen.
R = P

1−P
where P=the probability that a certain outcome will happen

R(1 − P ) = P
R = P (1 +R)
P = R

1+R

Let z =ln(R) = β0 + β1x1 + β2x2 + ...+ βpxp
P = ez

1+ez
= 1

1+e−z

Figure 3. Plot of the logistic function

The logistic function f(z) = 1
1+e−z is used to find the probability that a certain combination

of variables will lead to a ”success” situation [4]. The plot of the logistic function in Figure
3 shows an S-shaped curve that lies between 0 and 1, representing the probablity at a certain
value of z. The goal is to determine the logistic regression coefficients from the collected data
set. Once this is completed, one can determine the probability that a certain event will happen
with different combinations of independent risk variables.

3. Results

3.1. Statistical Analysis.

3.1.1. Maternal Age. Within our data set, maternal age is normal distributed (see Figure 4), as
is placenta weight and placenta ratio. Figure 5 shows a best-fit least-squares linear regression
between maternal age and placenta weight, which produces the coefficient of determination
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Figure 4. Distribution of maternal age in our data set

Figure 5. Maternal age to placenta weight line fit plot

R2 = 0.01, with the associated F-stat P-value of 0.6287. This is not significant or meaningful
other than to confirm that placenta weight is independent of maternal age.

However, if we compare maternal age to placenta ratio and run a best-fit least-squares linear
regression, we find a slightly better coefficient of determination in R2 = 0.01. The associated
F-stat P-value is 0.0005. These results are shown in Figure 6. While this still small R2 value
indicates the difficulty in making accurate predictions of placenta ratio based on maternal age,
the low P-value indicates that maternal age does indeed influence the placenta ratio. Couple
this to the previously stated fact that maternal age does not influence placenta weight, and
we have indirect evidence that maternal age affects birth weight. Stated another way, while
maternal age may affect the weight of the offspring, those influences bypass the determination
of placenta weight.
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Figure 6. Maternal age to placental ratio line fit plot

3.1.2. Maternal BMI. To study the effect of the mother’s BMI on the placenta, the statistical
technique of linear regression was used. We found the placental ratio and the β measure of
placental efficiency to be a better measure of the placenta, and specifically a better measure
of the placenta-baby-mother relationship. The β value is similar to the placental ratio, but is
instead defined as

β = log (placenta weight)
log (birth weight)

Figure 7 shows a best-fit least-squares linear regression between BMI and the placental ratio.
For this fit, R2 = .020921 and the F -stat P -value = 3.54E − 07 suggesting a positive linear
correlation between the two variables. This result is not surprising and is corroborated by
recent studies [5]. A second linear regression between BMI and the β value bears similar results
with R2 = .020158 and the F -stat P -value = 5.8E− 07. This result enforces the positive linear
correlation between maternal BMI and the placenta-baby relationship in that both the placental
ratio and the β value are measures of the ratio between the weight of the baby and the weight
of the placenta. Learning of and confirming this relationship caused us to ask, in what other
ways are these two variables related?

A second statistical investigation was conducted to further explore the relationship between
maternal BMI and the placental ratio. For our data set, the average BMI is 25.76 and the
average placenta ratio is .137; Table 2 lists the amount of individuals over or under these
averages, the amount of individuals that are over or under both averages, and the amount of
individuals that are mixed. 233 individuals are over both the BMI average and the placenta
ratio average; where as 481 individuals are under both the BMI average and the placenta ratio
average. This result indicates that the tendency to be under both averages is greater than the
tendency to be over both averages. Moreover, only 216 individuals were over the BMI average
but under the placenta ratio average, suggesting that an individual under the BMI average is
2.22 times more likely to be under the placenta ratio average than an individual over the BMI
average.

299 individuals are under the BMI average but over the placenta ratio, suggesting that an
individual under the BMI average is actually 1.28 times more likely to be over the placenta
ratio than an individual who is over the BMI average. These results are less significant (and
less accurate) when one considers that although the average BMI for our data set was 25.76,
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Figure 7. Maternal BMI to placental ratio line fit plot

the majority of the mothers in the set measured closer to a BMI of 22. This discrepancy is
due to our data set containing 327 mothers over a BMI of 28, 254 mothers over a BMI of 30,
and even 139 mothers over a BMI of 35. The high frequency of high BMI’s makes for more
individuals being under the ”average” BMI in that the average BMI is elevated above the norm
which is generally considered to be somewhere between 20-25 for a healthy women. Regardless
of the high BMI’s, a definite trend exists with significantly more individuals being under both
averages than over both averages.

> BMI Average > P Ratio Average Individuals over > BMI average and
both averages < P Ratio Average

449 532 233 216
< BMI Average < P Ratio Average Individuals under < BMI average and

both averages > P Ratio Average
780 697 481 299

Table 2. Amount of individuals over or under the BMI and placenta ratio averages

3.1.3. Mother’s Ethnicity. To study the effect of the mother’s ethnicity on the placenta, the
average placenta weight and placental ratio were calculated for each ethnicity. The data was
split up by ethnicity and the mean and variance of each set was calculated for the placenta
weight and placental ratio. Figure 8 shows the highest average placenta weight was with white
mothers (449.49 ± 101.94) and the lowest average placenta weight was with African American
mothers (418.81 ± 115.79). The highest average placental ratio was with African American
mothers (.1434 ± .0331), shown in Figure 9. This shows that African American babies in this
study had the lowest average birth weight compared to their placenta weight. However, the
average placental ratio only ranged from 13.3% to 14.4% among the ethnicities, so the placental
ratio remained somewhat constant regardless of ethnicity. The fact that the African American
ethnicity had the lowest average placental weight is supported by many past studies [1][3].
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Figure 8. Average placenta weight by ethnicity

Figure 9. Average placenta ratio by ethnicity

3.1.4. Gestational Diabetes. In the gestational diabetes group, the mothers were classified with
two values (0 = no gestational diabetes and 1 = gestational diabetes). Using linear regression to
analyze if gestational diabetes affected placental weight and ratio provided us with poor results.
Looking at the non-gestational diabetes mothers and comparing the maternal characteristics of
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age and BMI of this particular group with placental weight only provided us with the results
shown in Figures 10 and 11. When analyzing this data using linear regression, we decided
to focus on the R2 values and F-significance values. Hence, from Figures 10 and 11, only
Figure 10 provides a slightly better F-significance value of 0.000278, indicating that BMI does
influence placental weight. However, the R2 value of 0.01 made it difficult to make any accurate
predictions of placental weight based on BMI.

Figure 10. BMI and placental weight for non-gestational diabetes group

Figure 11. Age and placental weight for non-gestational diabetes group

We then decided to analyze the gestational diabetes group in search of better results. In
doing so, we discovered that these results were worse than those obtained in the non-gestational
diabetes group. Figures 12 and 13 show that placental weight is independent of gestational
diabetes. The same analysis was done for both groups, but looking at the placental ratio,
and the results were not meaningful. The results only provided that the placental ratio was
independent of gestational diabetes.

Due to the lack of inconclusive results that were obtained using linear regression analysis for
this particular group, we decided to analyze the gestational diabetes group using the Z-test. The
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Figure 12. BMI and placental weight for gestational diabetes group

Figure 13. Age and placental weight for gestational diabetes group

Z-test is a test that compares sample and population means to determine if there is a significant
difference. The z-score is a measure of how far away a measurement is from the mean, measured
in standard deviations. The formula that is used to calculate this score is z = x−x̄

s
, where x is

a measurable value, x̄ is the mean of all measured values and s is the standard deviation of the
measured values.

From Table 3, we can see that the average placental ratio and weight of the gestational
diabetes group is higher than the mean of all the population, yet this information does not
allow us to make any conclusions on how gestational diabetes affects placental weight and
placental ratio. Our goal was to have a converted z-score of ±2 because this is statistically
significant. By looking at the z-scores of the placental ratio and weight, 0.33 and 1.22 are the
standard deviations from the population mean, respectively. These results do not show us a
significant difference in the gestational diabetes groups mean from the means population. The
results simply indicate that there is a 37% probability that mothers will have a higher average
than the populations placental ratio and a 11% probability that mothers will have a higher
average than the populations placental weight.
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Placental Ratio Placental Weight
Population Average .1369 438.7063

Population Standard Deviation .03196 104.0824
Total Cases 1229 1229

Average Ratio for Non-Diabetics .1368 437.8503
Standard Deviation .03205 103.34995

Total Non-Diabetic Cases 1182 1182

Average Ratio for Diabetics .1384 460.2340
Standard Deviation .02993 120.3212
Total Diabetic Cases 47 47

Standard Error (of Diabetes) .004366 17.550646
Z-Score .33695 1.226609

Converted Z-Score .37 .11
Table 3. Z-test analysis for placental ratio and placental weight in relation to
gestational diabetes

3.2. K-means clustering. By any measure, our k-means clustering produced poor numerical
results. In most cases, the clustering goodness-of-fit was only a few percentage points better
than random paring. This indicates minimal formation of homogeneous clusters. Examine case
Ethnicity 2.5, found in Table 4. In this case, three-dimensional spatial vectors were formed.
The characteristics used were maternal age, maternal BMI, and placenta ratio. Ethnicity was
assigned to be the ground-truth. In the associated plot, seen in Figure 2 above, the three spatial
characteristics position the observation while ethnicity colors and shapes it. In Ethnicity 2.5 we
divided the ground-truth into five values corresponding to the five ethnicities reported in the data
set. The k-means algorithm found the best-fit centroids for five distinct clusters, represented by
the large magenta stars in the scatter plot of Figure 14. Our cluster-identity mechanism assigned
a ground-truth value to each of the five clusters. Each observation vector was compared to that
of its nearest cluster, under both the Euclidean and Mahalanobis metric. Cycling through all
1229 observations, positive identity matches were recorded for later comparison. As seen in
Table 4, the results for Ethnicity 2.5 are rather weak, as they are for the other ethnic cases as
well. In Ethnicity 2.5 specifically, our method pairs vectors with their correct cluster only 29%
of the time. If we dealt out cluster membership at random we would have achieved a 20% match
rate. Note however, that by switching to the Mahalanobis metric, our success rate increases to
31%.

As displayed in the other tables, comparable results occur even when different characteristic
combinations are employed. For example, in case Age 1.5, found in Table 1, the success rates
were 28% and 27% for Euclidean and Mahalanobis distances respectively. Compare this to the
17% that would have occurred via random cluster assignment. For a last example, look at
Birthweight 1.0, found in Table 5. Here we use five spatial dimensions and color the ground-
truth by birth weight. As a change of pace, we only employed two ground-truth values; 0 for
below the mean birth weight, and 1 for above the mean. This produced two cluster identities
and evenly distributed the population between the two. An individual vector has a 50/50
chance of being assigned to its proper cluster. While the high number of spatial characteristics
requires that the vectors exist only in hyperspace, we are still aiming for a simple two cluster
separation. Unfortunately this does not happen. The goodness-of-fit tops out at 55%, indicating
that there is minimal clustering relative to birth weight. The distribution of the two data types



MATH 579 FINAL REPORT MODELING OF MEASURABLE MATERNAL ATTRIBUTES 15

case name Ethnicity
1.0

Ethnicity
1.5

Ethnicity
2.0

Ethnicity
2.5

spatial dimensions n 2 2 3 3
spatial characteristics maternal

BMI,
placenta
ratio

maternal
BMI,
placenta
ratio

maternal
age, mater-
nal BMI,
placenta
ratio

maternal
age, mater-
nal BMI,
placenta
ratio

ground truth ethnicity ethnicity ethnicity ethnicity
number of clusters k 5 5 5 5

g-of-f random assignment 20% 20% 20% 20%
g-of-f k-means Rn (Euclidean) 9% 9% 29% 29%

g-of-f k-means Rn (Mahalanobis) 9% 9% 31% 31%
Principal Components 2 1 3 2

g-of-f k-means PC-subspace (Euclidean) 9% 31% 29% 26%
g-of-f k means PC-subspace (Mahalanobis) 9% 31% 31% 26%

Table 4. Cases with ethnicity for ground-truth

Figure 14. The first two principal components, with ethnicity for ground truth

is exceedingly well mixed. Conclusively, the ground-truth characteristic, namely birth weight,
is almost completely independent of the five characteristics that go into the spatial dimensions.
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case name Birthweight 1.0 Birthweight 1.5
spatial dimensions 5 5

spatial characteristics maternal ethnic-
ity, maternal age,
maternal BMI,
gestational dia-
bletes, placenta
weight

maternal ethnic-
ity, maternal age,
maternal BMI,
gestational dia-
betes, placenta
weight

ground truth birth weight birth weight
number of clusters k 2 2

g-of-f random assignment 50% 50%
g-of-f k-means R5 (Euclidean) 55% 55%

g-of-f k-means R5 (Mahalanobis) 55% 55%
Principal Components 3 2

g-of-f k-means PC-subspace (Euclidean) 54% 48%
g-of-f k means PC-subspace (Mahalanobis) 55% 48%

Table 5. Cases with birth weight for ground-truth

3.3. Principal Component Analysis. In analyzing a data set along its principal components
we hope to reduce clutter and clarify trends. PCA is a tool to use within a larger analytical
method, which in our case is k-means clustering. For now, we forego the major weaknesses per-
taining to k-means clustering detailed above and focus solely on principal component analysis.
In doing so, we see that the goodness-of-fit for our method often increased by a few percent-
age points after a principal component projection. Other times though, the goodness-of-fit
remained the same. Our efforts show that while PCA sometimes improved the overall picture,
better results were not guaranteed.

Examine cases Ethnicity 1.0 and Ethnicity 1.5 found it Table 4 above. In Ethnicity 1.0 the
number of principal components equals the number of spatial variables. Clearly, no improvement
in clustering is expected, since, in this case, PCA merely reorients the data along a different set of
axes. There is no reduction in dimension and the goodness-of-fit remains at 9% across the board.
In case Ethnicity 1.5 however, we do make a reduction in dimension. The two-dimensional
spatial vectors are projected onto a single axis defined by the first principal component. We
observe a significant jump in clustering success, from the original 9% to 31%, but this is a
rare occurrence. If we examine the neighboring case Ethnicity 2.5, we see that by reducing the
dimensions from three spatial characteristics to the first two principal components we actual
decrease the goodness-of-fit.

In the cases detailed in Tables 1 and 5, we venture into higher dimensions. Cases Age 1.0
and Age 1.5 of Table 1 project the same five dimensional vectors into a three-dimensional and
two-dimensional subspace respectively. Unfortunately, in both cases the projections reduced
the overall goodness-of-fit. Further note that the first three principal components gave slightly
worse results then the first two components. Equally dismal results are demonstrated in cases
Birthweight 1.0 and Birthweight 1.5 of Table 5. In both cases, five spatial variables are projected
into subspaces defined by the first three, and first two, principal components. In Birthweight
1.0 the projection into three-dimensional space results is no improvement, while in Birthweight
1.5 the projection into two-dimensional space actually worsens the fit. Clearly, using principal
component analysis on maternal and placental data returns mixed results. While improvements
may occur in clustering, they are not consistent or substantial.

Speaking strictly in terms of visual inspection, there is only modest improvement. Examine
Figures 2 and 14 again. These plots pertain to case Ethnicity 2.5 where we project three
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spatial characteristics of Figure 2 into a two-dimensional subspace defined by the first two
principal components. The reduced plot, Figure 14 above does make the centroids stand out
more, but the degree of improvement is rather subjective. Perhaps with less chaotic data, a
spatial reduction along principal components could produce more pronounced benefits. In truth,
Principal Component Analysis is still a powerful and useful tool, just not with our current data
configuration.

3.4. Logistic Regression. The logistic function f(z) = 1
1+e−z is used to find the probability

that a certain combination of variables will lead to a ”success” situation. z is defined as
z = β0 + β1x1 + β2x2... + βpxp. β0, β1, ..., βp are the regression coefficients and x1, x2, ..., xp are
the risk factors. The regression coefficients are based on n trials of observed data.

The Matlab built-in function, glmfit, finds the coefficients in multivariate binomial applica-
tions. The first trial to study was the binomial situation referenced to the β-value.
A ”success” situation is when β < .75 and a ”fail” situation is when β ≥ .75 since the placenta
is considered more efficient when β < .75. With this information and our set of placenta data,
the regression coefficients found with the glmfit function are
β0 = −.739364, β1 = .050368, β2 = −.017877, β3 = −.066001, β4 = .048526
With these values, we can plot the logistic function based on our data set. Figure 15 shows

the logistic regression plot determined by the data set in this study. Notice that the plot only
ranges from .35 to .85. This is because our data set only creates a short domain in the middle
of the logistic function plot. If we extend our data set out for a larger range of values outside
of our data set, we can create a plot with the same regression coefficients. Figure 16 shows
the extended curve for values outside our data set. Appendix A shows how to determine the
regression coefficients and plot the resulting logistic function.

Figure 15. Logistic regression for β value based on our data set

Another application of logistic regression studied the binomial situation for low birth weight
or not. Based on the ”success” as low birth weight, the regression coefficients found with the
glmfit function are
β0 = −2.118044, β1 = .0150295, β2 = −.0196460, β3 = .3892553, β4 = .0120513
From this, we can see that the third risk factor, gestational diabetes, contributes the most

to the probability of the child having low birth weight while the other factors are somewhat
insignificant. Figure 17 shows the plot of the logistic curve based on our data set.
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Figure 16. Extended logistic regression curve for β value

Figure 17. Logistic regression for low birth weight based on our data set

Since logistic regression is a method based on probabilities and not something like curve
fitting, there is not a practical way of measuring error. The error is simply in the probability
aspect. Thus, there is no way of determining the error in this method. Logistic regression
may be helpful to determine whether a fetus will have a certain condition based on maternal
characteristics and data collected in previous studies. It has a wide application to be used in
many situations and thus, can be a useful tool in early detection of pregnancy risks.
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4. Conclusions

In this study, we searched for direct connections between placenta weight, or ratio, and mater-
nal characteristics, or combinations of characteristics. We used several independent mathemat-
ical approaches, namely statistical analysis, k-means clustering, principal component analysis,
and logistical regression. While we were able to deduce several meaningful insights about ma-
ternal factors that influence the placenta, our methods were far from satisfactory. The results
were often statistically significant, but too weak to be used for prediction. We continue to hold
fast to the belief that maternal traits strongly influence placenta features. However, little to
no estimation of placenta weight can be deduced from the following characteristics: maternal
ethnicity, age, BMI, or diabetic status.

5. Future Work

We found the examination of maternal influences on placenta characteristics to be interesting,
challenging work. There were plenty of undeveloped ideas worthy of further exploration. For
instance, a covariance matrix between maternal characteristics and principal components might
pinpoint the most influential principal components. Perhaps the data under consideration could
be expanded to include additional maternal and placental characteristics. Non-linear regression
could also be applied for possible improvements. It is clear that the data set offers a variety of
information for those with the energy and patience to run down the leads.
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Appendix A. Logistic Regression

function [B P]=logistic_regression(X,Y,x)

% Computes the regression coefficients in the equation z=b0+b1x1+b2x2+...

% +bpxp for the logistic regression equation f(z)=1/(1+exp(-z)) and plots

% the results based on the data set

% B : regression coefficients b0,b1,b2,...,bp

% X : n by p matrix representing n trials of p risk factors

% Y : binomial response of desired response. 0=fail, 1=success

% Optional input x : value at which to calculate the probability of a

% success, 1 by p vector which represents the values of the p risk factors

% P : probability, P, determined by input x

% Written by Samantha Godfrey 4/14/11

B=glmfit(X,Y,’binomial’,’link’,’logit’);

n=size(X,2);

z=B(1);

for j=1:n

z=z+B(j+1)*X(:,j);

end

Z=1./(1+exp(-z));

plot(z,Z,’.’)

if nargin==3

P=glmval(B,x,’logit’);

end

Appendix B. The Matlab script for K-means and PCA

clear

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% the following four variables are user defined

%load in the workspace bucket containing the prepared data set

load % enter pre-processed workspace here

% set display desire to one to show the scatter plot, zero to suppress.

display_desire = 1;

max_colors_to_plot = 7;

% set the maximum number of dimensions for our PCA subspace

set_max_PCA_dim = 3;

%set the maximum number of clusters we want

set_max_number_of_clusters = 6;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%Split the atrributes matrix from the color logic column

[r,c] = size(data_set);

X = (data_set(:,1:c-1))’;

color_logic_index = data_set(:,c);

% sets the dimension of our PCA subspace

if set_max_PCA_dim <= c-1

PCA_dim = set_max_PCA_dim;

else

PCA_dim = c-1;
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end

% finalize the number of clusters we will have.

number_of_colors = max(color_logic_index)-min(color_logic_index)+1;

if number_of_colors <= set_max_number_of_clusters

number_of_clusters = number_of_colors;

else

number_of_clusters = set_max_number_of_clusters;

end

% finalize the number of color logic values get plotted.

if max_colors_to_plot >= number_of_colors

colors_to_plot = number_of_colors;

else

colors_to_plot = max_colors_to_plot;

end

% we will run through the loop two times. The first time working with our

% as is attribute matrix, the second time projecting the atrributes to a

% lower dimension using PCA

for cordinate_method = 1:2

if cordinate_method == 1

Y = X;

else

% This is the heart of PCA, Y is the vector attribues in the new subspace

[W, sigma, V] = svd(X);

W_L = W(:,1:PCA_dim);

Y = (W_L’)*X;

end

%we pick the first few scatter points to be the start of the kmeans iteration

centroid_starter = Y(:,1:number_of_colors)’;

% This is Matlab’s k-mean function

[cluster_index,centroids] = kmeans(Y’,number_of_clusters,’start’,centroid_starter);

%here we determine how many of each color are in each cluster

cluster_vs_color = zeros(number_of_clusters,number_of_colors);

for i = 1:number_of_clusters

for j = 1:number_of_colors

counter = 0;

for k = 1:1229

if cluster_index(k) == i

if color_logic_index(k)==j

counter = counter +1;

end

end

cluster_vs_color(i,j) = counter;

end

end

end

color_count_sums = sum(cluster_vs_color,1);

% we determine how much of each color is in each cluster as a percentage
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cluster_v_color_percent = zeros(number_of_clusters,number_of_colors);

for i = 1:number_of_clusters

for j = 1:number_of_colors

cluster_v_color_percent(i,j) = cluster_vs_color(i,j)/color_count_sums(j);

end

end

%we determine the dominant color for each cluster

permission_matrix = ones(number_of_clusters,number_of_colors);

winner_matrix = zeros(number_of_clusters,number_of_colors);

cluster_identity_color = zeros(number_of_clusters,1);

for h = 1:number_of_clusters

held_item = 0;

max_row = 1;

max_col = 1;

for i = 1:number_of_clusters

for j = 1:number_of_colors

if permission_matrix(i,j) == 1

if cluster_v_color_percent(i,j) > held_item

held_item = cluster_v_color_percent(i,j);

max_row = i;

max_col = j;

end

end

end

end

winner_matrix(max_row,max_col) = held_item;

cluster_identity_color(max_row) = max_col;

permission_matrix(max_row,:) =0;

permission_matrix(:,max_col) = 0;

end

% we determine the goodness of fit of the cluster dominant color

fit_positive_count_1 = 0;

fit_negative_count_1 = 0;

kmeans_cluster_membership = 0;

for k = 1:1229

kmeans_cluster_membership = cluster_index(k);

if color_logic_index(k) == cluster_identity_color(kmeans_cluster_membership)

fit_positive_count_1 = fit_positive_count_1 + 1;

else

fit_negative_count_1 = fit_negative_count_1 + 1;

end

end

% we turn the goodness of fit into a percentage

if cordinate_method ==1

straight_fit_positive_percent_1 = fit_positive_count_1/1229

else

PCA_fit_positive_percent_1 = fit_positive_count_1/1229

end

% we divide up the cluster for later processing

for h = 1:number_of_clusters
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clear cluster_subsets

counter = 1;

for k = 1:1229

if cluster_index(k) == h

cluster_subsets(:,counter) = Y(:,k);

counter = counter +1;

end

end

array_of_cluster_subsets{h} = cluster_subsets;

end

% We determine the Mahalanobis distance between each observation and

% each cluster centroid

Mahal_distances = zeros(number_of_clusters,1229);

for h = 1:number_of_clusters

cluster_subsets = array_of_cluster_subsets{h};

mu = mean(cluster_subsets,2);

[r,c] = size(cluster_subsets);

subset_minus_mean = zeros(size(cluster_subsets));

for j = 1:c

subset_minus_mean(:,j) = cluster_subsets(:,j) - mu;

end

cluster_sigma2 = subset_minus_mean*subset_minus_mean’;

cluster_inverse_sigma2 = pinv(cluster_sigma2);

for j = 1:1229

Dm = sqrt((Y(:,j)-mu)’*cluster_inverse_sigma2*(Y(:,j)-mu));

Mahal_distances(h,j) = Dm;

end

end

% for each observation we determine what centroid is closest under the

% Mahalanobis metric

closest_cluster_Mahal = zeros(1,1229);

for j = 1:1229

held_item = 100;

for i = 1:number_of_clusters

if Mahal_distances(i,j) < held_item

held_item = Mahal_distances(i,j);

closest_cluster_Mahal(j) = i;

end

end

end

% we now conduct a goodness of fit count under the Mahalanobis distance

fit_positive_count_2 = 0;

fit_negative_count_2 = 0;

closest_cluster_membership = 0;

for k = 1:1229

closest_cluster_membership = closest_cluster_Mahal(k);

if color_logic_index(k) == cluster_identity_color(closest_cluster_membership)

fit_positive_count_2 = fit_positive_count_2 + 1;

else

fit_negative_count_2 = fit_negative_count_2 + 1;

end
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end

% we convert the goodness of fit count to a percentage

if cordinate_method ==1

straight_fit_positive_percent_2 = fit_positive_count_2/1229

else

PCA_fit_positive_percent_2 = fit_positive_count_2/1229

vs_random_positive_odds = 1/number_of_colors

end

% now we proceed to plot the scatter plots

if display_desire ==1

% we do so by first splitting the observations into subsets arranged by

% logic value

if min(color_logic_index) ==0

for h = 0:(number_of_clusters-1)

clear logic_subset

counter = 1;

for k = 1:1229

if color_logic_index(k) == h

logic_subset(:,counter) = Y(:,k);

counter = counter +1;

end

end

array_of_logic_subsets{h+1} = logic_subset;

end

end

if min(color_logic_index)==1

for h = 1:number_of_clusters

clear logic_subset

counter = 1;

for k = 1:1229

if color_logic_index(k) == h

logic_subset(:,counter) = Y(:,k);

counter = counter +1;

end

end

array_of_logic_subsets{h} = logic_subset;

end

end

if min(color_logic_index)==2

for h = 1:number_of_clusters

clear logic_subset

logic_subset = zeros(size(Y,1),1);

counter = 1;

for k = 1:1229

if color_logic_index(k) == (h)

logic_subset(:,counter) = Y(:,k);

counter = counter +1;

end

end

array_of_logic_subsets{h} = logic_subset;
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end

end

%now that we have the observations broken up by logic "ground

%truth" value we proceed to plot them one at a time with a

%different color and marker shape.

color_options = {’r’,’b’,’m’,’g’,’k’,’y’};

marker_options = {’o’,’+’,’*’,’x’,’s’,’^’};

marker_size = 50;

centroid_size = 200;

% if the PCA dimension is 2 or less we only get two plots, one for

% euclidean distance, one for Mahalanobis distance

if PCA_dim <=2

figure(cordinate_method)

for h = 1:colors_to_plot

clear logic_subset

logic_subset = array_of_logic_subsets{h};

scatter(logic_subset(1,:),logic_subset(2,:),marker_size,color_options{h},marker_options{h})

hold on

end

scatter(centroids(:,1),centroids(:,2),centroid_size,’pc’,’filled’)

hold off

else

% if we more then 2 principal components we create four plots.

% Two are three dimensional, two are 2 dimensional, for the

% Euclidean distanc and Mahalanobis distance respectively

figure(cordinate_method*2 -1)

for h = 1:colors_to_plot

clear logic_subset

logic_subset = array_of_logic_subsets{h};

scatter3(logic_subset(1,:),logic_subset(2,:),logic_subset(3,:),marker_size,color_options{h},marker_options{h})

hold on

end

scatter3(centroids(:,1),centroids(:,2),centroids(:,3),centroid_size,’pc’,’filled’)

hold off

figure(cordinate_method*2)

for h = 1:colors_to_plot

clear logic_subset

logic_subset = array_of_logic_subsets{h};

scatter(logic_subset(1,:),logic_subset(2,:),marker_size,color_options{h},marker_options{h})

hold on

end

scatter(centroids(:,1),centroids(:,2),centroid_size,’pc’,’filled’)

hold off

end

end

end
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