Classification using Machine-Learning Algorithms (MALA)

Math 579 Dr. Jen-Mei Chang

> Rodrigo Farnham Tuyen Ly Jason Wang

Our Idea

"The placenta is the crystal ball of the baby." - Dr. Carolyn Salafia

- o Extract and identify features of the placenta
- o Extract relevant patient/mother data
- Use above data to train a machine-learning system, hopefully to make predictions
 of a baby's future health

Overview 1) Analyze placental attributes 2) Maternal Attribute Clasification 3) Learning Machine System: Weka "A suite of machine learning software written at the University of Waikato"

Numerical Representation of the Vessel Network (done by hand)

0	0	0	0	0	0	0	0	0	0
O	O	0	0	0	0	1	0	0	O
O	Ο	0	0	0	0	1	0	0	0
O	Ο	0	0	0	1	0	1	0	0
O	1	1	0	1	0	0	0	1	0
O	O	0	1	0	0	0	0	0	0
O	O	1	0	1	0	0	0	0	0
O	Ο	0	0	1	0	0	0	0	0
0	0	0	0	1	0	0	0	0	0
0	0	0	0	0	0	0	0	oh	ς ⁰

2	Inf	Inf	Inf	Inf	Inf	Inf	lnf	Inf	Inf	Inf
3	Inf						0			Inf
ß	Inf						0			Inf
	Inf					0		0		Inf
Viatiab Dutput	Inf	0	0		0				0	Inf
	Inf			0						Inf
	Inf		0		0					Inf
	Inf				0					Inf
	Inf				0					Inf
	Inf									

Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Int
Inf					1	0	1		Int
Inf				1.41	1	0	1	1.41	Int
Inf	1	1	1.41	1	0	1	0	1	Int
Inf	0	0	1	0	1	1.41	1	0	Int
Inf	1	1	0	1	1.41		1.41	1	Inf
Inf	1	0	1	0	1				Int
Inf	1.41	1	1	0	1				Inf
Inf			1	0	1				Inf
Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf

Inf	Inf	Inf	Inf	Inf	Inf	lnf	Inf	Inf	Inf
Inf			2.83	2	1	0	1	2	Inf
Inf	2	2	2.41	1.41	1	0	1	1.41	Inf
Inf	1	1	1.41	1	0	1	0	1	Inf
Inf	0	0	1	0	1	1.41	1	0	Inf
Inf	1	1	0	1	1.41	2.41	1.41	1	Inf
Inf	1	0	1	0	1	2	2.41	2	Inf
Inf	1.41	1	1	0	1	2			Inf
Inf	2.41	2	1	0	1	2			Inf
Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf

Inf 3 3 2.83 2 1 0 1 2 Inf 2 2 2.41 1.41 1 0 1 1.41 Inf 1 1 1.41 1 0 1 1.41 Inf 1 1 1.41 1 0 1 1.41 Inf 0 0 1 0.41 1 0 1 0.41 Inf 0 0 1 0.41 1 0 1 0 1 Inf 1 0 1 1.41 1 0 1 1.41 1 0 Inf 1 0 1 1.41 2.41 1.41 1 Inf 1.41 1 0 1 2 3 3 Inf 2.41 2 1 0 1 2 3 3 Inf 2.41 2 1 0 1 2 3 3	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf
Inf222.411.411011.41Inf111.4110101Inf001011.4110Inf11011.412.411.411Inf1011.412.411.411Inf101233Inf2.41210123	Inf	3	3	2.83	2	1	0	1	2	Inf
Inf111.4110101Inf001011.4110Inf11011.412.411.411Inf1010122.412Inf1.411101233Inf2.41210123	Inf	2	2	2.41	1.41	1	0	1	1.41	Inf
Inf 0 0 1 0 1 1.41 1 0 Inf 1 1 0 1 1.41 2.41 1.41 1 Inf 1 0 1 0 1 2.41 2 Inf 1.41 1 1 0 1 2 2.41 2 Inf 1.41 1 1 0 1 2 3 3 Inf 2.41 2 1 0 1 2 3 3	Inf	1	1	1.41	1	0	1	0	1	Inf
Inf 1 1 0 1 1.41 2.41 1 1 Inf 1 0 1 0 1 2 2.41 2 Inf 1.41 1 1 0 1 2 3 3 Inf 2.41 2 1 0 1 2 3 3	Inf	0	0	1	0	1	1.41	1	0	Inf
Inf 1 0 1 2 2.41 2 Inf 1.41 1 0 1 2 3 3 Inf 2.41 2 1 0 1 2 3 3 Inf 2.41 2 1 0 1 2 3 3	Inf	1	1	0	1	1.41	2.41	1.41	1	Inf
Inf 1.41 1 0 1 2 3 3 Inf 2.41 2 1 0 1 2 3 3	Inf	1	0	1	0	1	2	2.41	2	Inf
Inf 2.41 2 1 0 1 2 3	Inf	1.41	1	1	0	1	2	3	3	Inf
·	Inf	2.41	2	1	0	1	2	3		Inf
Inf Inf Inf Inf Inf Inf Inf Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf

Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	In
Inf	3	3	2.83	2	1	0	1	2	In
Inf	2	2	2.41	1.41	1	0	1	1.41	In
Inf	1	1	1.41	1	0	1	0	1	In
Inf	0	0	1	0	1	1.41	1	0	In
Inf	1	1	0	1	1.41	2.41	1.41	1	In
Inf	1	0	1	0	1	2	2.41	2	In
Inf	1.41	1	1	0	1	2	3	3	In
Inf	2.41	2	1	0	1	2	3	4	In
Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Inf	Int

Vessel Network

Maternal Attributes

Strength:

•A whole lot of data, total of 209 attributes

- mom's ethnicity
- mom's height
- mom's age at pregnancy start date
- child's birth weight
- mom's total weight gain
- # of previous pregnancies
- # of previous live births
- etc.

Weaknesses:

 Too much data
 A lot of irrelevant data as well as dependent data

Maternal Attributes

	A	В	C	D	E	F	G	H	1
1	LABID	BirthWeight	GestationalDays	Weightbeforecuttingcordmembrane	Distancebetweenrupturesiteplacentalmargin	CordLength	CordWeight	Weightaftercuttingcordmembrane	DELV
2	1,353	2,770	261	530	5-10	20	#NULL!	400	
3	1,402	2,692	254	-99	-99	-99	#NULL!	-99	
4	1,433	2,624	262	440	<5	45	#NULL!	350	1
5	1,462	4,018	284	420	<5	37	#NULL!	340	
6	1,471	3,489	256	570	<5	51	#NULL!	450	
7	1,472	3,338	278	460	5-10	23	#NULL!	370	
8	1,473	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	1
9	1,474	3,421	286	560	<5	36	#NULL!	450	
10	1,475	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
11	1,476	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
12	1,478	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
13	1,479	2,369	285	370	-99	48	#NULL!	320	
14	1,480	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
15	1,482	-999	187	300	<5	19	#NULL!	240	
16	1,489	3,790	274	600	<5	60	#NULL!	460	
17	1,490	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
18	1,491	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
19	1,492	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
20	1,498	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
21	1,499	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
22	1,501	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
23	1,502	3,172	277	470	Unknown	33	#NULL!	400	
24	1,503	3,042	268	480	<5	56	#NULL!	340	
25	1,504	3,657	295	560	5-10	57	#NULL!	460	
26	1,505	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	#NL
27	1,506	3,185	275	540	5-10	37	#NULL!	450	
28	1,507	3,391	271	690	<5	34	#NULL!	600	
29	1,508	2,556	259	570	<5	61	#NULL!	420	
30	1,509	3,484	266	510	<5	51	#NULL!	420	
31	1,510	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
32	1,511	#NULL!	#NULL!	#NULL!		#NULL!	#NULL!	#NULL!	
33	1,512	3,462	281	530	<5	42	#NULL!	430	
34	1,513	2,220	243	440	5-10	15	#NULL!	330	
35	1,514	2,885	270	530	>10	57	#NULL!	440	
36	1,515	2,872	280	500	<5	50	#NULL!	420	
37	1,516	2,827	263	500	<5	53	#NULL!	390	
38	1,517	3,139	264	600	<5	35	#NULL!	470	~
14	+ H jer	nmei jan 20	011/		<				>

Maternal Attributes

The attributes we chose to look at:

- "Reasonable" attributes
- Attributes whose data is "spread out"
- Results from research papers/publications

- I. Mother's total weight gain¹
- II. Number of previous pregnancies
- III. Summary Index # of Prenatal Care Adequacy²
- IV. Gestational Days
- V. Family's Poverty Level Index³

¹ http://www.telegraph.co.uk/health/healthnews/7926233/Putting-on-too-much-weight-in-pregnancy-risk-babys-health.html

² http://www.sjph.net.sd/files/vol4i4/SJPH-vol4i4-p403-410.pdf

³ http://www.epi.umn.edu/mch/resources/hg/hg_childpoverty.pdf

Birth Weight & Beta Value

The Importance of Birth Weight:

doi: 10.1111/j.1365-3016.2008.00935.x

Fetal growth correlates

Placental characteristics and birthweight

Carolyn M. Salafia^{2,5}, Jun Zhang⁴, Adrian K. Charles⁴, Michaeline Bresnahan^{2,5}, Patrick Shrout⁴, Wenyu Sun⁴ and Elizabeth M. Maas⁴

^aDepartment of Epidemiology, Mailman School of Public Health, Columbia University College of Physicians and Surgeons, ^bNew York State Psychiatric Institute, ^cDepartment of Psychology, New York University, New York, NY, ^dEarlyPath Clinical and Research Diagnostics, Larchmont, NY, ^eEpidemiology Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA, and ⁱDepartment of Pathology, Princess Margaret Hospital, Perth, Western Australia

Summary

Correspondence: Carolyn M. Salafia, MD MS, Assistant Professor of Epidemiology, Mailman School of Public Health, Columbia University, 722 West 168th Street, New York, NY 10032, USA. E-mail: salafiacm@aol.com Salafia CM, Zhang J, Charles AK, Bresnahan M, Shrout P, Sun W, Maas EM. Prenatal characteristics and birthweight. Paediatric and Perinatal Epidemiology 2008; 22: 229–239.

Standard gross placental measures capture dimensions relevant to specific placental functions. Our objective was to determine their accountability independent of placental weight for variance in birthweight, an important proxy for intrauterine 'adequacy' in fetal origins studies. The sample consisted of 24 152 singleton liveborn children of the Collaborative Perinatal Project delivered from 34 to 42 completed weeks gestation, with complete data for six placental measures (placental disc shape, umbilical cord length, distance from cord insertion to nearest margin, large diameter, small diameter, placental thickness) and placental weight. Associations between birthweight and placental measures were examined using multiple linear regression. Placental weight alone accounted for 36.6% of birthweight variation; the six other placental measures accounted for 28.1%. Combined, all placental measures accounted for 39.1% of birthweight variation. Seven maternal characteristics (age, height, weight, parity, socio-economic status, cigarette use, and race) were investigated to determine whether their known associations with birthweight were mediated by placental markers. Analysis suggested that the impact of all maternal characteristics except smoking was consistent

229

Birth Weight & Beta Value

 $\beta = \frac{\log PW}{\log BW}^*$

 $\beta > 0.75$

ow functional efficiency $\beta < 0.75$

high functional efficiency

Birth Weight & Beta Value

Kleiber's Law:

Metabolic rate (q_0) is proportional to body mass (M) raised to $\frac{3}{4}$ power

 $q_0 \sim M^{\frac{3}{4}}$

Learning Machine: Weka

🍽 Weka GUI Chooser	
Program Visualization Tools Help	
(P)	Applications
WEKA	Explorer
of Waikato	Experimenter
Waikato Environment for Knowledge Analysis Version 3.6.4	KnowledgeFlow
(c) 1999 - 2010 The University of Waikato Hamilton, New Zealand	Simple CLI

Weka: http://www.cs.waikato.ac.nz/ml/weka/

W	eka
🔴 🔿 🥵 Weka E	Explorer
Preprocess Classify Cluster As	ssociate Select attributes Visualize
Open file Open URL Open DB Gene	rate Undo Edit Save
Choose None	Apply
Current relation Relation: sdv_vs_GA Instances: 139 Attributes: 361	Selected attribute Name: A359 Type: Numeric Missing: 0 (0%) Distinct: 111 Unique: 87 (63%)
Attributes All None Invert Pattern No. Name 551 A351 352 A352	StatisticValueMinimum-155.08Maximum201.12Mean-0.456StdDev71.818
353 A353 354 A354 355 A355 356 A356 357 A357 358 A358 359 A359 360 A360 361 proterm(1)	Class: preterm(1) (Nom) Visualize All
(Remove)	7

weka	Se None
🚞 filt	ers
	AllFilter
The second	MultiFilter
v	supervised
	attribute
	AddClassification AttributeSelection
	ClassOrder
	Discretize
	🕒 NominalToBinary
	PLSFilter
►	instance
Image: A start a st	unsupervised
	A357
	A358
	A360
	()preterm(u)
	Remove

OV

	Weka Explorer
Preprocess Classify C	uster Associate Select attributes Visualize
lusterer	
Choose EM -I 100 -N -1 -M 1.0E-6 -S 10	0
Cluster mode	Clusterer output
🔘 Use training set	=== Run information ===
 Supplied test set Set Percentage split % 66 Classes to clusters evaluation (Nom) preterm(1) Store clusters for visualization Ignore attributes Start Stop Start Stop 2:02:05 - Cobweb 2:02:35 - EM 	Scheme: weka.clusterers.EM -I 100 -N -1 -M 1.0E-6 -S 1 Relation: sdv_vs_GA Instances: 139 Attributes: 361 [list of attributes omitted] Test mode: split 66% train, remainder test

Building model on training data...

🖲 🔿 🔿 Weka Explorer					
Prepr	ocess Classify Cluster Associate Select attributes Visualize				
Attribute Evaluator					
Choose CfsSubsetEval					
Search Method					
Choose BestFirst -D 1 -N 5					
Attribute Selection Mode	Attribute selection output				
🔘 Use full training set	=== Run information ===				
Cross-validation Folds 10 Seed 1	Evaluator: weka.attributeSelection.CfsSubsetEval Search: weka.attributeSelection.BestFirst -D 1 -N 5 Relation: sdv_vs_GA Instances: 139 Attributes: 361 [list of attributes omitted]				
(Nom) preterm(1)	Evaluation mode: 10-fold cross-validation				
Start Stop	=== Attribute selection 10 fold cross-validation (stratified), seed: 1 ===				
Result list (right-click for options) 02:10:05 - BestFirst + CfsSubsetEval	number of folds (%) attribute 0(0%) 1 A1 0(0%) 2 A2 0(0%) 3 A3 0(0%) 4 A4 0(0%) 5 A5 0(0%) 6 A6 0(0%) 7 A7 4(40%) 8 A8 0(0%) 10 A10 0(0%) 11 A11 0(0%) 12 A12 4(40%) 13 A13 0(0%) 12 A12 4(40%) 13 A13 0(0%) 15 A15 0(0%) 16 A16 0(0%) 17 A17 0(0%) 18 A18 0(0%) 19 A19				
atus					

ОК

Prepro
Classifier
Choose Logistic -R 1.0E-8 -M -1
Test options
 Use training set
O Supplied test set Set
Cross-validation Folds 10
O Percentage split % 66
More options
(Nom) preterm(1)
Start Stop
Result list (right-click for options)
02:11:12 - functions.LibLINEAR
02:11:18 – functions.Logistic

Naïve Bayesian Classifier

sing Conditional Probability using Bayes's Theorem

$$\ldots, F_n) = \frac{p(C) \ p(F_1, \ldots, F_n | C)}{p(F_1, \ldots, F_n)}.$$

words:

 $osterior = \frac{prior \times likelihood}{evidence}$

ling the Conditional Probabilities

 $,\ldots,F_n)$

(C) $p(F_1|C) p(F_2|C, F_1) p(F_3|C, F_1, F_2) \dots p(F_n|C, F_1, F_2, F_3, \dots, F_{n-1})$

Naïve Bayesian Classifier

Independence Assumption:

 $(F_i|C, F_j) = p(F_i|C)$

/ing:

 $F_{1}, \dots, F_{n} = p(C) p(F_{1}|C) p(F_{2}|C) p(F_{3}|C) \cdots$ $= p(C) \prod_{i=1}^{n} p(F_{i}|C).$ Normalization constant (1/Z) is the same for all C, so we can ignore it $F_{1}, \dots, F_{n} = \frac{1}{Z} p(C) \prod_{i=1}^{n} p(F_{i}|C)$

ication Rule

$$\mathbf{y}(f_1,\ldots,f_n) = \operatorname{argmax} p(C=c) \prod_{i=1}^n p(F_i=f_i|C=c).$$

Naïve Bayesian Classifier

```
from math import log, exp
class BayesianClassifier(object):
    def __init__(self):
        self.observation total = 0
        self.observations = {}
        self.observations_dual = {}
        self.labels = {}
        self.feats = ()
    def train(self, event, evidence):
        self.observations.setdefault(event, {})
        self.labels.setdefault(event, 0)
        self.observation_total += 1
        self.labels[event] += 1
        for v in evidence:
            self.observations[event].setdefault(v, 0)
            self.observations_dual.setdefault(v, {})
            self.observations_dual[v].setdefault(event, 0)
            self.feats.setdefault(v, 0)
            self.observations[event][v] += 1
            self.feats[v] += 1
            self.observations_dual[v][event] += 1
    def classify(self, evidence, complement=False):
        estimates = [(self.cond_comp(event, evidence, complement), event)
                     for event in self.labels]
        highest_prob, likely_event = max(estimates)
        estimates = [(exp(prob - highest_prob), event)
                     for prob, event in estimates]
        highest prob = 1 / sum(prob for prob, event in estimates)
        estimates = [(highest_prob * prob, event)
                     for prob, event in estimates]
        return likely event, highest prob
    def cond comp(self, event, evidence, complement):
        if event not in self.labels:
            return 0
        else:
            #Using log probabilities to prevent underflow
            P event = log(self.labels[event]) - log(self.observation total)
            P \text{ condt} = 0
            for Bk in evidence:
                if Bk not in self.feats: continue
                P_condt += ( log(self.observations[event].get(Bk,0) + 1) -
                             log(self.labels[event]) )
            if complement:
                for Bk in self.feats:
                    if Bk in evidence: continue
                    P_condt += ( log(self.labels[event] -
                                     self.observations[event].get(Bk, 0) + 1) -
                                 log(self.labels[event]) )
            return P event + P condt
```

9

10

12

13

14

15

16

17

18

19

20

21

22

23 24

25

27

28

30

31 32

33

34 35

36

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

Questions? Comments?

STEWIE GRIFFIN WALLPAPER CREATED BY ZAC MARTIN

VERSION 1 - SACLUSS "WHAT THE BEXCE" TEXT VERSION 2 - DOES NOT SACLUSE "WHAT THE BEXCE" TEXT

WHAT THE DEUCE?