TEAM BLOB

IN CASE YOU Forgot

PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED

Sketch i1 Out!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs A Life?

TEAM BLOB Blob Segmentation

AUSTIN ADAMS, KC SKUBIC, LEIGHANN VAN DEVENTER, and G.D. YOUNG

Department of Mathematics and Statistics California State University, Long Beach

・ロト・雪・・雪・・雪・・ 白・ 今々ぐ

THE BLOB

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A Life?

Abstract

Given a set of placental histology slides our goal was to isolate blobs and their corresponding vessels, then compare the results for accuracy.

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life? Examine different preprocessing applications
 Apply various blob segmentation methods
 Take a hand sketching of isolated blobs and compare methods
 Determine accuracy

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial ane Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Examine different preprocessing applications Apply various blob segmentation methods Take a hand sketching of isolated blobs and compare methods

Determine accuracy

・ロト・日本・日本・日本・日本・日本

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOI WATERSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life? Examine different preprocessing applications
 Apply various blob segmentation methods

Take a hand sketching of isolated blobs and compare methods

Determine accuracy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED

SKETCH II OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Examine different preprocessing applications
 Apply various blob segmentation methods
 Take a hand sketching of isolated blobs and compare

methods

Determine accuracy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

- Examine different preprocessing applications
 - Apply various blob segmentation methods
- Take a hand sketching of isolated blobs and compare methods
 - Determine accuracy

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Break it Down

TEAM BLOB

1 In Case you Forgot

- Histology Slides
- Preprocessing
- From Zero to Image Processing

2 Image Segmentation Methods

- K-means Method
- Chan Vese
- Edge Detection
- Histogram Method
- Watershed
- No One's Perfect

3 Hand-sketched Histology Slides

・ロン ・ 雪 と ・ ヨ と ・ ヨ ・

- Sketch and Scan
- Comparisons

4 Who Needs a Life?

The End

IN CASE YC Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

- TRIAL AND ERROF K-MEANS METHO CHAN VESE EDGE DETECTION
- HISTOGRAM METH
- WATERSHED

NO ONE'S PERFEC

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

What is a Histology Slide? Original Histology Slide

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES

PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAI COMPARISONS

CONCLUSION

WHO NEEDS A LIFE? A Histology slide the microscopic image of a perpendicular bisection of the placenta. It portrays the maternal and fetal tissues as 2-D cross-sectional blobs.

Figure: Original Image

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

What is a Histology Slide? A Closer Look at The Blob

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES

PREPROCESSING FROM ZERO TO

IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAL COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Full SLIDE \rightarrow VILLUS \rightarrow BLOOD VESSELS/ Cell NUCLEI

Figure: Zoomed In

Color Me Mine Different Color Channels

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES

PREPROCESSING

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOR WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

RGB Color Space

2 Lab Color Space

3 HSV Color Space

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Color me Mine RGB Color Space

R: red, G: green, B: blue

Figure: Original Image in RGB

TEAM BLOB

FORGOT Histology Slide: Preprocessing

PREPROCESSING

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCA COMPARISONS

CONCLUSION

Who Needs a Life?

Lab Intensity Corridoring Lab Color Space

TEAM BLOB

IN CASE YOU FORGOT Histology Slides Preprocessing

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCA COMPARISONS

CONCLUSION

WHO NEEDS A LIFE? "L": lightness of color, "a": redness vs. greenness, "b": yellowness vs. blueness

Figure: Lab Corridoring Image

Color Me Mine HSV Color Space

TEAM BLOB

IN CASE YOU FORGOT Histology Slides Preprocessing

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

H: Hue, S: Saturation, V: Value

Figure: Original Image in the Saturated Channel

イロン 不得 とくほ とくほ とうほ

From Zero to Image Processing Reference Algorithm

TEAM BLOB

IN CASE YOU FORGOT HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND Error

K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO

NO ONE'S PERFECT

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life? Quantifying Clinically Significant Features of Placental Histology Images: a Method

By: Morten Andersen , David Belangery, Radina Droumeva, Jenny Lix, Gilbert Moss, Gabriela Palauk August, 2008

 Similar project: Segmentation of Placental "Blobs"
 Uses K-means Segmentation with Mahalanobis Distance Metric

Potential for Comparison

Lesson Learned: Data Set Determines Algorithm

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

From Zero to Image Processing Reference Algorithm

TEAM BLOB

IN CASE YOU FORGOT HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERRO K-MEANS METHO

CHAN VESE

HISTOGRAM METHO

WATEKSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life? Quantifying Clinically Significant Features of Placental Histology Images: a Method

By: Morten Andersen , David Belangery, Radina Droumeva, Jenny Lix, Gilbert Moss, Gabriela Palauk August, 2008

Similar project: Segmentation of Placental "Blobs"

 Uses K-means Segmentation with Mahalanobis Distance Metric

Potential for Comparison

Lesson Learned: Data Set Determines Algorithm

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

From Zero to Image Processing Reference Algorithm

TEAM BLOB

IN CASE YOU FORGOT HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERRO K-MEANS METHO

CHAN VESE

HISTOGRAM METHO

WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE? Quantifying Clinically Significant Features of Placental Histology Images: a Method

By: Morten Andersen , David Belangery, Radina Droumeva, Jenny Lix, Gilbert Moss, Gabriela Palauk August, 2008

Similar project: Segmentation of Placental "Blobs"

- Uses K-means Segmentation with Mahalanobis Distance Metric
- 2 Potential for Comparison
 - Lesson Learned: Data Set Determines Algorithm

Results Using Their Method Our Histology Image

TEAM BLOB

IN CASE YOU FORGOT HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

ERROR TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCA COMPARISONS

CONCLUSION

Who Needs a Life? "You are absolutely right - lesson number one in image processing - you need to carefully choose and adapt methods for application-specific requirements" -Radina Droumeva

Figure: Resulting Histology Image

In Case you Forgot

HISTOLOGY SLIDES

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Problems with their Method

Image Resolution

Difficulties Distinguishing: shades of pink/rec

Predetermined Color Markers

Sensitive to Blob Boundaries

・ロト・西ト・モート 中下 シック

TEAM BLOB

IN CASE YOU Forgot

HISTOLOGY SLIDES PREPROCESSING

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOI WATERSHED NG OWN'S BEDETER

SKETCH I1 OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Problems with their Method

Image Resolution

Difficulties Distinguishing: shades of pink/red

Predetermined Color Markers

Sensitive to Blob Boundaries

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

TEAM BLOB

IN CASE YOU Forgot

HISTOLOGY SLIDES

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

NO ONE'S PERFECT

SKETCH IT OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Problems with their Method

Image Resolution

2 Difficulties Distinguishing: shades of pink/red

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- Predetermined Color Markers
- 4 Sensitive to Blob Boundaries

TEAM BLOB

IN CASE YOU Forgot

HISTOLOGY SLIDES

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

NO ONE'S PERFECT

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Problems with their Method

- Image Resolution
- 2 Difficulties Distinguishing: shades of pink/red

▲□▶▲□▶▲□▶▲□▶ □ のQ@

3 Predetermined Color Markers

Sensitive to Blob Boundaries

TEAM BLOB

IN CASE YOU Forgot

HISTOLOGY SLIDES

FROM ZERO TO IMAGE PROCESSING

Trial and Error

- TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED
- NO ONE'S PERFECT

SKETCH IT OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Problems with their Method

- Image Resolution
- 2 Difficulties Distinguishing: shades of pink/red

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- **3** Predetermined Color Markers
- 4 Sensitive to Blob Boundaries

Results Using Their Method Our Histology Image

TEAM BLOB

IMAGE PROCESSING

2

Figure: Resulting Histology Image Figure: Resulting Histology Image

イロト イポト イヨト イヨト

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING

IMAGE PROCESSING

Trial ane Error

TRIAL AND ERROR

K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOI WATERSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Methods We Tried

K-means

- Euclidean
- Mahalanobis

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Chan Vese

Edge Detection

4 Watershed

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR

K-MEANS METHOR Chan Vese Edge Detection

HISTOGRAM METHO

WATERSHED

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Methods We Tried

K-means

- Euclidean
- Mahalanobis

2 Chan Vese

Edge Detection

4 Watershed

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING

FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR

K-means Methoi Chan Vese Edge Detection

HISTOGRAM METH

WATERSHED

NO ONE'S PERFECT

SKETCH I1 OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Methods We Tried

K-means

- Euclidean
- Mahalanobis

▲□▶▲□▶▲□▶▲□▶ □ のQ@

- 2 Chan Vese
- 3 Edge Detection
- 4 Watershed

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING

FROM ZERO TO IMAGE PROCESSING

Frial and Error

TRIAL AND ERROR

K-MEANS METHO CHAN VESE

EDGE DETECTION

WATERCHEN

NO ONE'S PERFECT

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Methods We Tried

K-means

- Euclidean
- Mahalanobis
- 2 Chan Vese
- 3 Edge Detection
- 4 Watershed

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING

FROM ZERO TO IMAGE PROCESSING

Frial and Error

TRIAL AND ERROR

K-means Metho Chan Vese

EDGE DETECTION

WATERSHED

NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Methods We Tried

K-means

- Euclidean
- Mahalanobis

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

- 2 Chan Vese
- 3 Edge Detection
- 4 Watershed
- 5 Histogram

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

K-MEANS METHOD

CHAN VESE

EDGE DETECTION

HISTOGRAM METHO

WATERSHED

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

Euclidean Distance - Lab Space Matlab's built in K-Means Algorithm

4 vs. 5 Cluster Centers

4: Lumps light pink with light purple, some pink with rec
 5: Separates Red, Pink, Light Purple, Blue, and White effectively

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

3

Blobs are the inverse of the White Segmentation
Result: Slow but reasonably effective "Discrete Method

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

TRIAL AND

ERROR

TRIAL AND ERROR

K-MEANS METHOD

CHAN VESE

EDGE DETECTION

HISTOGRAM METHO

WATERSHED

NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

Euclidean Distance - Lab Space

Matlab's built in K-Means Algorithm

- 2 4 vs. 5 Cluster Centers
 - 4: Lumps light pink with light purple, some pink with red
 - 5: Separates Red, Pink, Light Purple, Blue, and White effectively

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

Blobs are the inverse of the White Segmentation
Bosult: Slow but reasonably effective "Discrete Methods"

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

IMAGE PROCESSING

Trial ane Error

TRIAL AND ERROR

K-MEANS METHOD

CHAN VESE

EDGE DETECTION

HISTOGRAM METHO

WATERSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

Euclidean Distance - Lab Space

Matlab's built in K-Means Algorithm

- 2 4 vs. 5 Cluster Centers
 - 4: Lumps light pink with light purple, some pink with red
 - 5: Separates Red, Pink, Light Purple, Blue, and White effectively

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

3 Blobs are the inverse of the White Segmentation

Result: Slow but reasonably effective "Discrete Method"

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

IMAGE PROCESSING

Trial ane Error

TRIAL AND ERROR

K-MEANS METHOD

CHAN VESE

EDGE DETECTION

HISTOGRAM METHO

WATERSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

Euclidean Distance - Lab Space

Matlab's built in K-Means Algorithm

- 2 4 vs. 5 Cluster Centers
 - 4: Lumps light pink with light purple, some pink with red
 - 5: Separates Red, Pink, Light Purple, Blue, and White effectively

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

3 Blobs are the inverse of the White Segmentation

4 Result: Slow but reasonably effective "Discrete Method"

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR Trial and Errof K-means Metho Chan Vese Edge Detection Histogram Meth Watershed

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Histology Slide 1

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERROI K-MEANS METHO CHAN VESE EDGE DETECTION HISTOGRAM METT WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Total Segmentation 1

イロト 不良 とくほ とくほう 二日

K-Means Euclidean Proves Promising

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAI COMPARISONS

CONCLUSION

Who Needs a Life?

Figure:

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
K-means Killer K-means Euclidean Method

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERROI K-MEANS METHO CHAN VESE EDGE DETECTION HISTOGRAM METT WATERSHED

SKETCH II

SKETCH IT OUT! SKETCH AND SCAL COMPARISONS

CONCLUSION

Who Needs a Life?

K-means Killer K-means Euclidean Method Results

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERROR K-MEANS METHON CHAN VESE EDGE DETECTION HISTOGRAM METH WATERSHED

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Total Segmentation 2

K-means Killer K-means Euclidean Method

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR Trial and Erro K-means Metho Chan Vese Edge Detection Histogram Met

WATERSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

WHO NEEDS A Life?

K-means Killer K-means Euclidean Method Results

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METH WATERSHED

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Figure: Total Segmentation 3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへぐ

K-means Killer Mahalanobis Distance in RGB Space

TEAM BLOB

In Case you Forgot

- HISTOLOGY SLIDES PREPROCESSING
- FROM ZERO TO IMAGE PROCESSING

Trial and Error

- TRIAL AND ERROR
- K-MEANS METHOD
- CHAN VESE
- EDGE DETECTION
- HISTOGRAM METHO
- WATERSHED

SKETCH IT OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Verbal Break Down

- **1** Weights distance to an absolute color marker
 - Set by variance in each channel of RGB color space
 - Result: Using fixed color markers across variant variance structures creates segmentation distortions

Further Work Ideas

- Use the Covariance Matrix of a single representative image
- Use the Covariance of the entire population of images
 Report the "Volatility of Volatility" in the image set as indicator of likely success

K-means Killer Mahalanobis Distance in RGB Space

TEAM BLOB

In Case you Forgot

- HISTOLOGY SLIDES PREPROCESSING
- FROM ZERO TO IMAGE PROCESSING

Trial and Error

- TRIAL AND ERROR
- K-MEANS METHOD
- CHAN VESE
- EDGE DETECTION
- HISTOGRAM METHOI
- WATERSHED
- NO ONE'S PERFECT

SKETCH II OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Verbal Break Down

- U Weights distance to an absolute color marker
 - Set by variance in each channel of RGB color space
 - Result: Using fixed color markers across variant variance structures creates segmentation distortions
- 2 Further Work Ideas
 - Use the Covariance Matrix of a single representative image
 - Use the Covariance of the entire population of images
 - Report the "Volatility of Volatility" in the image set as indicator of likely success

K-means Killer Original Image

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERROI K-MEANS METHO CHAN VESE EDGE DETECTION HISTOGRAM METH WATERSHED

NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

K-means Killer Original Image

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR Trial and Erro K-means Metho Chan Vese Edge Detection Histogram Met Waterscherd

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAT COMPARISONS

CONCLUSION

Who Needs a Life?

K-means Killer Original Image

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR Trial and Erro K-means Metho Chan Vese Edge Detection Histogram Met

WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

K-Means, Mahalanobis, RGB Space Histology Slide Calibrations

TEAM BLOB

IN CASE YOU FORGOT

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERRO

K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOE WATERSHED NO ONE'S PERFECT

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Calibration 1

Figure: Calibration 2

・ロト ・ 同ト ・ ヨト ・ ヨト

K-Means, Mahalanobis, RGB Space Histology Slide Calibrations

TEAM BLOB

IN CASE YOU FORGOT

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOE WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Calibration 1

Figure: Calibration 2

▲□▶▲□▶▲□▶▲□▶ □ のへで

K-Means, Mahalanobis, RGB Space Histology Slide Calibrations

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERROR **K-MEANS METHOD** CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

SKETCH IT

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Calibration 1

Figure: Calibration 2

▲□▶▲□▶▲□▶▲□▶ □ のへで

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR

- K-MEANS METHOD
- CHAN VESE
- EDGE DETECTION
- HISTOGRAM METHO
- WATERSHED
- NO ONE'S PERFECT

SKETCH IT OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Verbal Break Down

$\blacksquare \ \mathsf{RGB} \to \mathsf{Lab}$

- Mahalanobis calculation in the L, a, and b planes.
- Distance in Light Intensity Value weighted in the Mahalanobis calculation
- Result: Removes distortion from the Mahalanobis calculation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR

- K-MEANS METHOD
- CHAN VESE
- EDGE DETECTION
- HISTOGRAM METHO
- WATERSHED
- NO ONE'S PERFECT

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

$\blacksquare \ \mathsf{RGB} \to \mathsf{Lab}$

- 2 Mahalanobis calculation in the L, a, and b planes.
 - Distance in Light Intensity Value weighted in the Mahalanobis calculation
- Result: Removes distortion from the Mahalanobis calculation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR

CHAN VESE

EDGE DETECTION

HISTOGRAM METHO

WATERSHED

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

 $\blacksquare \ RGB \rightarrow Lab$

- 2 Mahalanobis calculation in the L, a, and b planes.
- 3 Distance in Light Intensity Value weighted in the Mahalanobis calculation
 - Result: Removes distortion from the Mahalanobis calculation

・ロト・(四ト・(日下・)日・)の(の)

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR

K-MEANS METHOD

EDGE DETECTIO

HISTOGRAM METHO

WATERSHED

NO ONE'S PERFECT

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Verbal Break Down

 $\blacksquare \ RGB \to Lab$

- 2 Mahalanobis calculation in the L, a, and b planes.
- Distance in Light Intensity Value weighted in the Mahalanobis calculation
- Result: Removes distortion from the Mahalanobis calculation

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

TEAM BLOB

IN CASE YOU FORGOT

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOI WATERSHED NO ONE'S PERFECT

SKETCH IT OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Figure: Segmented Vessels

Figure: Total Segmentation

TEAM BLOB

IN CASE YOU FORGOT

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR Trial and Error K-MEANS METHOD Chan Vese Edge Detection Histogram Metho Watershed

SKETCH IT OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Figure: Segmented Vessels

Figure: Total Segmentation

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOD

CHAN VESE

EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Mumford-Shah functional outline provided by: Zoltan Kato

Mumford-Shah functional

Let *f* be differentiable on ∪ *R_i* and allowed to be discontinuous across Γ.
 E(*f*, Γ) = μ² ∫∫_R (*f* − *g*)² *dxdy* + ∫∫_R ||∇*f*||² *dxdy* + *v*|Γ|
 The smaller *E*, the better (*f*, Γ) segments *g* Dropping any term would cause *infE* = 0

◆□▶ ◆□▶ ▲□▶ ▲□▶ ■ ののの

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOR

CHAN VESE

EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE? Mumford-Shah functional outline provided by: Zoltan Kato

Mumford-Shah functional

Let *f* be differentiable on ∪ *R_i* and allowed to be discontinuous across Γ.
 E(*f*, Γ) = μ² ∫∫_R (*f* − *g*)² *dxdy* + ∫∫_R ∫ ||∇*f*||² *dxdy* + *v*|Γ|
 The smaller *E*, the better (*f*, Γ) segments *g f* approximates *g f* (hence *g*) does not vary much on *R_i*'s
 The boundary Γ be as short as possible

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOD

CHAN VESE

EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE? Mumford-Shah functional outline provided by: Zoltan Kato

Mumford-Shah functional

Let *f* be differentiable on ∪ *R_i* and allowed to be discontinuous across Γ.
 E(*f*, Γ) = μ² ∫∫_R (*f* − *g*)²*dxdy* + ∫∫_R [|∇*f*||²*dxdy* + *v*|Γ|
 The smaller *E*, the better (*f*, Γ) segments *g f* approximates *g*

(日) (日) (日) (日) (日) (日) (日)

f (hence g) does not vary much on R_i's
 The boundary Γ be as short as possible

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

TRIAL AND Error

TRIAL AND ERROR K-MEANS METHOR

CHAN VESE

EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE? Mumford-Shah functional outline provided by: Zoltan Kato

Mumford-Shah functional

Let *f* be differentiable on ∪ *R_i* and allowed to be discontinuous across Γ.
 E(*f*, Γ) = μ² ∫∫_R (*f* − *g*)²*dxdy* + ∫∫_R ||∇*f*||²*dxdy* + *v*|Γ|
 The smaller *E*, the better (*f*, Γ) segments *g f* approximates *g*

2 f (hence g) does not vary much on R_i 's

3 The boundary I be as short as possible

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO

Trial and Error

TRIAL AND ERROR K-MEANS METHOE

CHAN VESE

EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Mumford-Shah functional outline provided by: Zoltan Kato

Mumford-Shah functional

- Let *f* be differentiable on $\bigcup R_i$ and allowed to be discontinuous across Γ . $E(f,\Gamma) = \mu^2 \iint_R (f-g)^2 dx dy + \iint_R \iint_\Gamma ||\nabla f||^2 dx dy + v|\Gamma|$
- The smaller *E*, the better (f, Γ) segments *g*
 - f approximates g
 - 2 f (hence g) does not vary much on R_i 's
 - **3** The boundary Γ be as short as possible

TEAM BLOB

In Case you Forgot

- HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO
- TRIAL AND Error
- TRIAL AND ERROR K-MEANS METHOR
- CHAN VESE
- EDGE DETECTION HISTOGRAM METHOD WATERSHED

SKETCH I OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Mumford-Shah functional outline provided by: Zoltan Kato

Mumford-Shah functional

- Let *f* be differentiable on $\bigcup R_i$ and allowed to be discontinuous across Γ . $E(f,\Gamma) = \mu^2 \iint_R (f-g)^2 dx dy + \iint_R \prod_{\Gamma} ||\nabla f||^2 dx dy + v|\Gamma|$
- The smaller *E*, the better (f, Γ) segments *g*
 - f approximates g
 - 2 f (hence g) does not vary much on R_i 's
 - 3 The boundary Γ be as short as possible
 - Dropping any term would cause infE = 0

Chan Vese Method Cartoon Image Example

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD

CHAN VESE

EDGE DETECTION HISTOGRAM METHOE WATERSHED NO ONE'S REFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Cartoon Image Example provided by: Zoltan Kato

(a) Example Image 1

(c) Example Image 2

(b) Example Image 1 After

(d) Example Image 2 After

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERRI

K-MEANS METHOD

CHAN VESE

EDGE DETECTION HISTOGRAM METHOE WATERSHED NO ONE'S PERFECT

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Using Histology Slide 1

Chan Vese is a Work in Progress Still Needs Work

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERR

K-MEANS METHOR

CHAN VESE

EDGE DETECTION HISTOGRAM METHOE WATERSHED NO ONE'S REFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Figure: Using Histology Slide 1 (2) (2)

50 100 150 200 250

150 200

Edge Detection Inspection Edge Detection Method

Find Binary Image

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Edge Detection Inspection

▲□▶▲□▶▲□▶▲□▶ □ のQ@

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Edge Detection Inspection Edge Detection Method

Verbal Break Down

- Find Binary Image
- 2 Use Canny Edge Detection

▲□▶▲□▶▲□▶▲□▶ □ のQ@

3 Merge Disjoint Regions

Edge Detection Inspection

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOR

CHAN VESE

EDGE DETECTION

WATERSHED

NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Histology Slide 1

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Edge Detection Inspection

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOE CHAN VESE

EDGE DETECTION

HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Black and White of Original 1

Edge Detection Method Results Blobs Only

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND ERROR TRIAL AND ERF

CHAN VESE

EDGE DETECTION

HISTOGRAM METHOD WATERSHED

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Segmented Blobs of Original 1

Edge Detection Method Results Blobs and Vessels

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

FRIAL AND ERROR Trial and Error K-means Methor Chan Vese Edge Detection

HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCAT COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Segmented Blobs and Vessels of Original 1

▲ロ▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Histology and Histogram go Hand-in-Hand Histology Method

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CONCLUSION

Who Needs a Life?

Histology and Histogram go Hand-in-Hand Histology Method

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

CONCLUSION

WHO NEEDS A LIFE?
Histology and Histogram go Hand-in-Hand Histology Method

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

e?

Histogram Method Results Blobs Only

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Figure: Original

Figure: Blobs Segmented 200

Histogram Method Results Blobs Only

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD

WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Blobs Segmented Take 2

Histogram Method Results Blobs and Vessels

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

TRIAL AND Error

- K-MEANS METHOE CHAN VESE
- EDGE DETECTION

HISTOGRAM METHOD WATERSHED

NO ONE'S PERFECT

SKETCH I OUT!

- SKETCH IT OUT! SKETCH AND SCAP COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Color blobs indicate Villi and white indicates the blood vessels.

Figure: Blobs and Vessels Segmented

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOP WATERSHED NO ONE'S PERFECT

Sketch it Out!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

Find Binary Image

Find Distance Transform of Image

Run Watershed on Distance Transform

IN CASE YOU Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

SKETCH IT OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Verbal Break Down

Find Binary Image

2 Find Distance Transform of Image

Run Watershed on Distance Transform

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

Sketch it Out!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Verbal Break Down

- Find Binary Image
- 2 Find Distance Transform of Image
- 3 Run Watershed on Distance Transform

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAL COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Histology Slide 1

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOR WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAT COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Black and White of Original 1

Watershed Method Results Blobs Only

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Segmented Blobs of Original 1

Watershed Method Results Blobs and Vessels

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH I OUT!

SKETCH IT OUT! SKETCH AND SCAP COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Segmented Blobs and Vessels of Original 1

Sketch and Scan Hand-Tracings of Original Images

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED NO ONE'S PERFECT

Sketch it Out!

SKETCH IT OUT: SKETCH AND SCAL COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Histology Slide 1

Sketch and Scan Hand-Tracings of Histology Slide 1

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial ani Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED NO ONE'S PERFECT

SKETCH II OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Figure: Outlined Blobs

Figure: Outlined Vessels 500

Sketch and Scan Hand-Tracings of Original Images

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOR WATERSHED NO ONE'S PERFECT

Sketch it Out!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Histology Slide 2

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・ ・ ヨ

Sketch and Scan Hand-Tracings of Histology Slide 2

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial ani Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOR WATERSHED NO ONE'S PERFECT

SKETCH I1 OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Figure: Outlined Blobs

Figure: Outlined Vessels

Sketch and Scan Hand-Tracings of Original Images

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOR WATERSHED NO ONE'S PERFECT

Sketch i1 Out!

SKETCH IT OUT! SKETCH AND SCAT COMPARISONS

CONCLUSION

Who Needs a Life?

Figure: Histology Slide 3

Sketch and Scan Hand-Tracings of Histology Slide 3

TEAM BLOB

In Case you Forgot

HISTOLOGY SLIDES PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial ani Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

SKETCH II OUT!

- SKETCH IT OUT! SKETCH AND SCAN COMPARISONS
- CONCLUSION
- WHO NEEDS A LIFE?

Figure: Outlined Blobs

Figure: Outlined Vessels

Judging a Book by its Cover Comparing Blob Area

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

WHO N

LIFE?

Judging a Book by its Cover Comparing Vessel Area

- SKETCH IT OUT! SKETCH AND SCAL
- CONCLUSION
- WHO NEEDS A LIFE?

TEAM BLOB

SKETCH AND SCAP Comparisons

CONCLUSION

WHO NEEDS A LIFE? Further Examination of Chan Vese Metho
Combinations of Existing Methods
A Deeper Analysis of Our Data

(日)

TEAM BLOB

IN CASE YOU FORGOT

PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial and Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Further Examination of Chan Vese Method

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Combinations of Existing Methods

A Deeper Analysis of Our Data

TEAM BLOB

IN CASE YOU FORGOT

PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial ani Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOR WATERSHED

SKETCH II OUT!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Further Examination of Chan Vese Method Combinations of Existing Methods

▲□▶▲□▶▲□▶▲□▶ □ のQ@

A Deeper Analysis of Our Data

TEAM BLOB

IN CASE YOU FORGOT Histology Slides

PREPROCESSING FROM ZERO TO IMAGE PROCESSING

Trial ani Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHO WATERSHED

Sketch 11 Out!

SKETCH IT OUT! SKETCH AND SCAN COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Further Examination of Chan Vese Method

- 2 Combinations of Existing Methods
- 3 A Deeper Analysis of Our Data

Who Needs a Life?

TEAM BLOB

IN CASE YOU Forgot

PREPROCESSING FROM ZERO TO

TRIAL AND Error

TRIAL AND ERROR K-MEANS METHOD CHAN VESE EDGE DETECTION HISTOGRAM METHOD WATERSHED

SKETCH I' OUT!

SKETCH IT OUT! SKETCH AND SCAT COMPARISONS

CONCLUSION

WHO NEEDS A LIFE?

Questions?

TEAM BL
COMPARISONS CONCLUSION