
An Application of Orthogonal Projections:
Novelty Filter

Jen-Mei Chang, Ph.D.
Department of Mathematics and Statistics
California State University, Long Beach

Description

The following 5× 4 arrays of black squares can be realized in R
20 by associating each entry

with a dimension and giving each black square a numerical value of 1 and each empty square
a numerical value of 0.

v1 = v2 = v3 =

and

y =

Here, we want to study how different y is from the set spanned by the vi’s. This difference
can be captured by the residual of the orthogonal projection of y onto span {v1,v2,v3}. This
is a common practice in pattern recognition (e.g., face recognition, object matching, motion
detection, etc) where the residual gives us an idea of what feature is novel, something that
is not present in the gallery set. This is precisely why the method is called a novelty filter.

Notice that before we can apply the orthogonal projection, we need to make sure the basis
is orthogonal. Therefore, we start by finding an orthogonal basis forW = span{v1,v2,v3},
call it {u1,u2,u3}. Then find the orthogonal projection of y onto each Wi = span{ui} for
each i, denoted by ŷi. The result of the projections is shown in Figure 1.

Further notice that ŷi =
yTui

uT

i
ui

ui for each i = 1, 2, 3, and ŷ = ŷ1 + ŷ2 + ŷ3. We can then

write y as a sum of orthogonal vectors, one in W and one in the orthogonal complement of
W, W⊥, i.e., y = ŷ + z, where ŷ ∈ W and z ∈ W⊥. See Figure 2 for an illustration. Can
you see that the three black squares in the second column of y is what y is novel from W .
That is, one can never obtain those three black squares from linear combinations of the ui’s.

1



ŷ1 = ŷ2 = ŷ3 =

Figure 1: Orthogonal projections of y onto the subspace W = span{v1,v2,v3} expressed
separately in each direction.

y = ŷ + z

Figure 2: y written as a sum of two orthogonal vectors ŷ and z, where ŷ ∈ W and z ∈ W⊥.

Sample MATLAB Code

Here is a sample MATLAB code used to produce the results above.

%% black square = 1, blank square = 0

%% gallery

v1 = [1,1,1,1,1,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1]’;

v2 = [1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,1,1,1,1]’;

v3 = [1,0,0,0,1,1,0,0,0,1,1,0,0,0,1,1,0,0,0,1]’;

%% probe

y = [1,0,0,0,1,1,1,1,1,1,1,0,0,0,1,1,1,1,1,1]’;

%% define basis vectors for the training subspace

V = [v1 v2 v3];

[Q,R] = qr(V,0);

u1 = Q(:,1); u2 = Q(:,2); u3 = Q(:,3);

%% orthogonal projection onto each direction

y1_hat = ((y’*u1)/(u1’*u1)).*u1;

y2_hat = ((y’*u2)/(u2’*u2)).*u2;

y3_hat = ((y’*u3)/(u3’*u3)).*u3;

2



y_hat = Q*Q’*y;

z = y - y_hat;

%% graph the results:

I = ones(5,4);

temp1 = reshape(y1_hat,5,4); temp1 = I - temp1;

figure, imagesc(temp1), colormap(gray), axis off

temp2 = reshape(y2_hat,5,4); temp2 = I - temp2;

figure, imagesc(temp2), colormap(gray), axis off

temp3 = reshape(y3_hat,5,4); temp3 = I - temp3;

figure, imagesc(temp3), colormap(gray), axis off

y_hat = reshape(y_hat,5,4); y_hat = I - y_hat;

figure, imagesc(y_hat), colormap(gray), axis off

z = reshape(z,5,4); z = I - z;

figure, imagesc(z), colormap(gray), axis off

3


