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Preface 
 
 

This is a course about matrices. Specifically it is about matrices 
whose entries are real numbers—however the vast majority of the 
theorems are still true when one extends the discussion to matrices 
with complex numbers as entries. In fact, once one adjusts 
transposes to be conjugate transposes, then all theorems would be 
available. The reason for the restriction is that one cannot assume 
that students, mainly sophomores, have prior understanding of the 
complex number, and to make their background adequate would 
take too much time away from the matrix material.  
 
 
Fortunately, since the material is not burdened by the subtleties 
required for the definition and existence of the continuum, one can 
be more fully rigorous in the presentation. Thus rigor—not 
abstraction, is pursued throughout the course. Clarification was 
necessary since abstraction is often mistaken for rigor in 
mathematical discussions. For example, abstract vector spaces are 
not introduced; instead, some interesting ones in terms of matrices 
are discussed. Linear transformations are viewed simply as 
matrices. It is believed that once the student is ready for more 
abstract understanding, the jump can readily be made from the 
material presented. 
 
 
On the other hand, all proofs required, except for the Fundamental 
Theorem of Algebra on the existence of roots of polynomials, are 
presented in the text. Nevertheless, some of the more intricate, or 
technical, or just plain pesky, proofs are left for the Appendix of 
Proofs. 
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 Basic Concepts 
 
This is a course about matrices—or hyper numbers as they were once called. They 
have become so pervasive in modern mathematics and related fields, that many high 
school curricula now include them, while barely 50 years ago, matrices were only taught 
to upper division mathematics majors. 
 
A matrix is a simple notion—it is a rectangular array of numbers, usually encased in 

parentheses such as 1 2 3
4 5 6
  

 or 
1 4 7
2 5 8
3 6 9

    

 . More generally, one could state that a 

matrix is a rectangular array of objects, since later on we will talk of matrices as being 
made up of matrices themselves. Partly, it is this ability to think recursively about them 

that makes matrices powerful. For example,   can also be viewed as 

1 2 5 6
3 4 7 8
0 0
0 0

a b
c d

       

A B

0 C

    

where A is standing for 
 , B for 

 , 0 is 
 , and C for 

 1 2
3 4

 
5 6
7 8

 
0 0
0 0

 
a b
c d

 
. 






 
The size of a matrix is always given in the form the number of rows (first) by the 

number of columns. Thus, 
 1 2 3
4 5 6

 
 is a  matrix since it has 2 rows and 3 columns. 

Capital bold letters such as 

2 3×

A  will denote matrices. Naturally, then when we say A  is 
, we mean that it has m rows and n columns. A matrix A is square if it has the same 

number of rows as columns, such as an  matrix. The matrix 

m n×

n n×
1 4 7
2 5 8
3 6 9

    

  is square since 

it is a 3  matrix. 3×



 
A matrix with only one column will often be referred to as a (column) vector. Depending 
on the author, books often referred to either column vectors or row vectors as vectors. 
But we will be consistent and mean by a vector a column vector. Non-capital bold letters, 

such as u , will denote vectors, e.g.,  is a vector of size 3. This does not mean 

that A could not stand for a vector, since every vector is a matrix—it is just that if we use 
lower case letters, then we definitely know that we have a vector. 

1
2
3

u
   =     

 
Non-capital, non-bold (italic) letters will denote scalar quantities, which is another way 
to refer to numbers in our course. For the time being, if not throughout the course, scalars 
will be real numbers, e.g., . a = 2
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A matrix has entries in positions, which are described by row first and then column, thus 

the entry in the 1, position of the matrix 


 is a 3 while the position has a 

4. It is customary (among civilized people) to read matrices by rows, so the matrix above 
would be read 1, 2, 3, 4, 5 and 6 once the size is established. Of particular importance are 
the main diagonal positions: 1 , , , etc. In a square matrix, this set of 

positions is called the main diagonal. Thus the matrix 

3− 1 2 3
4 5 6



3,3−




2,1−

,1− 2,2−
1 4 7
2 5 8
3 6 9

    



atrix where the rows ar
s: 

  has 1, 5 and 9 in its 

main diagonal. 
 
If one needs to refer to a position in a matrix abstractly, then one uses the index notation. 
For example,  indicates the entry in the position of the matrix . 23a 2,3− ( )A ija=
 
We will use 0 to denote a zero matrix (or vector) of the necessary size all of whose 
entries are 0. If the size needs to be clarified, one uses index notation, for example 0  
denotes a 2  matrix of all zeroes. If only one index is used, such as 0 , it denotes a 
square matrix of that size. 

2 3×

3× 3

 
The following four examples illustrate matrices as useful in storing information. 
 
Example 1. Inventory. Let us suppose we are the owners of a small car dealership that 
sells two brands of cars, Hondas (H) and Toyotas (T), and three models for each of the 
brands, Sedans (S), SUV’s (V) and Coupes (C). Then inventory can easily be stored in a 

 m e indexed by the brands and the columns are indexed by 
the model
2 3×

S V C
5 3 2
8 4 1
    

H
T

V= 
 
 
Example 2. Communication Networks. Consider the very simple communication 
network among 10 cities, Los Angeles, New York and Kansas City among them, 
represented by the following graph. The 10 
cities are the vertices or nodes of the graph, 
represented by dots. The lines represent the 
direct linkages between the cities, and they are known as the edges of the graph. 
 
For any such graph, we can capture all the information it contains by the use of its 
adjacency matrix. Specifically, consider the cities as indexing the rows of a matrix, and 
also the columns of a matrix, so we would be considering a 10  matrix. There is one 
important requirement, we have the freedom to label the rows any way we want to, but 
we are committed to keep the labeling of the columns to be the same. Each of the entries 
of the matrix is either a 0 or a 1. For a given row and a given column, we put a 1 in that 
position if the city indicated by the row will be linked directly to the city indicated by the 
column. Thus for our graph, or example, if were to consider the picture (or graph as it is 

10×
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called) on the left, and if we label the rows of the matrix starting with LA and then 
consecutively until we arrive at NY, then the matrix is given by For example, if were to 
consider the picture (or graph as it is called) on the left, and if we label the rows of the 
matrix starting with LA and then consecutively until we arrive at NY, then the matrix is 

given by 

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 0
0 0 1 0 1 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 1 0

                          

. Note all of its entries are 0 or 1 so it is known as 

a ( matrix. )0,1 −

0 1 1 0
0 0 0 1
0 1 0 0
1 1 1 0 0
1 1 0 1

 
 

 
Closely associated with the previous example is the following 
 
Example 3. Influence Networks. Suppose that among 5 people the following influence 
patterns hold: Mark influences Alison, Carol and Jason, on the other hand Alison 
influences Emma and Carol, while Emma influences Mark and Carol, Carol influences 
Jason, and Jason influences Alison, Carol and Emma. We 
can represent this information via a directed graph, which is 
just like a graph except that now the lines connecting the 
vertices are actually arrows since they may have a direction.  C A

E

M

J

 
But again we can encapsulate the information in a 5 5  
adjacency matrix. If we list our vertices alphabetically, we 

get the following matrix:  . 

×

0
0
1

0


 
Example 4. Dinner Arrangements. As a prosperous, urban, young professional you are 
interested in showing off both your possessions and your acquaintances. Therefore you 
have a scheme of inviting your friends to dinner so they can get acquainted with each 
other, and with your apartment. Your brand new dining room table holds at most 4 hence 
you can have a maximum of 3 guests any one night. What you are trying to compute is 
the least number of nights you are going to have guests in order for any two of your 
friends to have at least one dinner together in your apartment. At present you consider 
you have 6 friends you would like to have over for dinner. 
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In this case, you have   pairs to entertain, and any one night you can take care of 

 pairs. It will take at least 5 nights. But can it be done in 5 nights? As a help in our 

tribulations, let's build a matrix with the following idea in mind: the rows of the matrix 
are indexed by your friends, so there are 6 rows; the columns of the matrix are indexed by 
the nights of entertaining, so there are 5 columns. The entries of the matrix are either 0’s 
or 1’s. For a given row and a given column, we put a 1 in that position if the friend 
indicated by that row is coming to dinner the night indicated by the column, otherwise we 
put a 0. Thus, every column has at most 3 1’s (so in total there can only be at most 15 
1’s in the matrix). How about each row? In one night, you can take care of friend A with 
B & C. In another night, A can come with D & E. But that means A has to come a third 
night since he has not had dinner with F. That means every row has to have at least 3 
ones, so there would have to be at least 18 ones in the matrix, which means your scheme 
cannot be done in 5 nights.  

6
2


 = 15

3
2





 = 3

 
How about 6 nights? Pursuing the idea of the matrix, which paid off 
in the previous consideration, we now have a 6 6×  matrix. Every 
column has at most 3 ones, and every row has at least 3 ones, so it 
must be that every row and column has exactly 3 ones. It does not 
take a long time to come up with a (basically unique) set up:  

1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1

m t w t f s

 
 
 
 
 
 
 
 
 
  

A
B
C
D
E
F

 
which is acceptable. Such a matrix is called an incidence matrix for 
the arrangement. 
 
One disadvantage (if we want to call it that) is that some friends are going to have dinner 
together twice (A&B on monday & tuesday, C&D on friday & saturday, and E&F on 
wednesday & thursday).  
 
 
Example 5. Transition Processes. Every year, 10% of the 
people in Southern California move to Northern California while 
20% of the people from Northern California move to Southern 
California. In this case, our digraph is very simple: 

10%

20%
S N

 
We build a matrix in a very similar fashion to what we did when doing the digraphs—
except that now rather than 0’s and 1’s, we will use the probabilities as the entries in the 
matrix. Thus, for example, in the 1 2−  position, we will put the probability of going from 
situation 1 to situation 2. Thus, if we let 1 be Southern California and 2 be Northern 

California, our matrix would be A = 0.9 0.1
0.2 0.8


 


 . This matrix is called the transition 

matrix. 
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The two most basic operations on matrices are that of addition (or subtraction), and 
scalar multiplication.  
 
Two matrices can be added (or subtracted) exactly when their sizes are the same, 

and then the addition (subtraction) is simply accomplished by adding (subtracting) the 
corresponding entries.  
 

Any matrix can be multiplied by any scalar, 
where every entry of the matrix is multiplied by the given scalar.  
 
 
Example 1 Revisited. Returning to the car dealership example, where our inventory of 

cars was represented by the matrix . Suppose we were to get a shipment of 

cars, which, of course, is also represented by a  matrix, . Then the new 

inventory, N, would be represented by the sum of the two matrices, 

. 

5 3 2
8 4 1

V
 =  

2








3× 5 2 3
1 3 3

S
 =  

10 5 5
9 7 4

N V S
 = + =   

 

On the other hand, if we had sales for the following month as given by L , 

then the new inventory would be . 

1 2 0
3 0 1
 =   

9 3 5
6 7 3

M N L
 = − =   

 

Similarly, suppose we wanted to double our inventory, then , which 

naturally is nothing but 

10 6 4
16 8 2

2V
 =  

V V+ .  
 
 
There are basically no differences between addition of matrices and addition of 
numbers, nor are there any differences between scalar multiplication of matrices and 
multiplication of numbers, and thus, one is not likely to commit any errors when 
performing these operations.  
 
One does, however, need to keep in mind  

the required uniformity of sizes before addition can be performed. 
 
But with this obvious requirement met, one can assume the following easily recognizable 
properties of numbers: 
 

A B B A+ = +  commutativity of addition 
( ) ( )A B C A B C+ + = + + associativity of addition 
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A 0 A+ =  zero matrix 
( )A A 0+ − =  negatives 

( )A B Aa a+ = + Ba  distributivity of scalar multiplication 

( )A A Aa b a b+ = +  distributivity of scalar multiplication 
 
 
An easy consequence of these properties is the following cancellation property: 

if A C B C+ = + , then A B= . 
The proof is easy: given that A C B C+ = + , then by adding −  to both sides one 
obtains the conclusion. 

C

 
 
We have just discussed to operations on matrices that are inherently equivalent to similar 
operations on numbers—but in the next section we take advantage of the matrix idea, and 
definitely do something that is not usually done with numbers. 
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 Matrix Stacking and Blocking 
 
 
If A and B are matrices (including the possibility of vectors), then we can perhaps make 
new matrices by stacking them either horizontally or vertically.  
 
More precisely, suppose A is  and B is m n× p q× . Then if we are to make a new matrix 
by stacking them horizontally, ( )A B , then what is necessary (and also obviously 
sufficient) is that they have the same number of rows, in other words, m , and then 

the resulting matrix would be of size . Thus if  and B , then 

p

)

=

=( q× +m n
1 2
3 4
5 6

A
   =     

7
8
9

       

( )A B
1 2 7
3 4 8
5 6 9

   =     
. 

 

But we can also stack matrices vertically A

C

  

A

C

 = 

, and then what is needed is that they have 

the same number of columns, , and then the resulting matrix is of size ( ) . 

E.g., if  and , then  . 

n q=

( )7 8

m p+ ×

1 2
3 4
5 6

A
   =     

C=

1 2
3 4
5 6
7 8

           



n

 
One common occurrence of horizontal stacking is that of making a matrix out of a 
collection (ordered) of vectors, from  each of size m, we can make the m n  

matrix . Or equivalently, one can think of a matrix as the 
(horizontal) stack of its columns. 

1 2, , ,u u un…

)
×

(A u u u= 1 2 n

 
We will use AΤ  to denote the transpose of the matrix A . This is the matrix obtained 
from A by switching the role of rows and columns, hence the first row becomes the first 
column, and the second row becomes the second column, etcetera. Thus, for example, 

. In particular, the transpose of a (column) vector u is a row vector, 

. In general, if A is , then 

1 2
5

3 4
6

5 6

Τ    =      
uΤ

1 3
2 4






m n× AΤ  is of size .  n m×
 
Naturally, the transpose of a square matrix is a square matrix of the same size, but it may 
be a different matrix.  
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If, however, A AΤ= , then the matrix is called symmetric. Note, e.g., that the adjacency 
matrix in the communication network example above was symmetric since all 
communication was two-way. But in the following example, the influence network, the 
matrix was not symmetric. In fact, the transpose matrix in that example would be 
interpreted as being influenced by rather that influence. 
 
It is easy to see that as long on either side makes sense,  

( )A B A B
Τ Τ Τ+ = + , 

namely  
the transpose of a sum is the sum of the transposes. 

And easily ( )A Aa aΤ Τ= . 
 
 
Similarly to the horizontal stacking of columns above, from row vectors, 1 2, , ,v v vm

Τ Τ Τ… , 

all of size n, we can stack them vertically, to obtain an  matrix m n×

1

2

v

v

vm

Τ

Τ

Τ

        
#

 . Or, again any 

matrix can be thought of as the vertical stacking of its rows. 
 
There are two special stacking constructions of matrices that work for any size matrices. 
They will not play much of a role in our course, but since they are easily described, and 
they perhaps may be important in later courses, we use them as an example of further 
stackings.  
 
Example 1. Direct Sums & Tensor Products. Suppose A is m  and B is n× p q× . Then 
their direct sum A B⊕  is given by then ( )  matrix that looks like 

.  

(m p n q+ × + )

)

A 0

0 B
m q

p n

×

×

     

For example, let  and B , then . One can think of 

direct sums as a diagonal stacking. An easy, yet useful fact is that if 

1 2
3 4
5 6

A
   =     

(a b=

1 2 0 0
3 4 0 0
5 6 0 0
0 0

A B

a b

     ⊕ =       
A C+  makes sense, 

and B  makes sense, then ( )D+ ( )A B C⊕ + ⊕D  makes sense and it equals  

( ) ( )A B C D⊕ + ⊕ ( ) ( )A C B D= + ⊕ + . 
 
 
A different construction is given by tensor products, which is abstractly described as 
follows if  and B , then their tensor product ( )A ija= ( jkb= ) A B⊗  is given by  
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11 12 1

21 22 2

1 2

B B B

B B

B B

A B

n

n

m m mn

a a a

a a a

a a a

     ⊗ =        

"

"

# # % #

"

B

B

)

. 

Observe that the size of the tensor product is then given by .  mp nq×
 

For example, let  and B , then . Observe that 

the tensor product of a scalar and a matrix is nothing but the scalar product. 

1 2
3 4
5 6

A
   =     

(a b=
2 2

3 3 4 4
5 5 6 6

A B
a b a b
a b a b
a b a b

   ⊗ =     

 
Just as we took the direct sum of two matrices we could have taken the direct sum of 
arbitrarily many matrices, and the same applies for the tensor product.  
 
A direct sum of 1  matrices (or scalars) is a diagonal matrix since all of its non-main 
diagonal entries are 0. A matrix that has zeroes below the main diagonal is called upper 
triangular while those that have zeros above the main diagonal are called lower 

triangular. These are naturally reserved for square matrices. For example, 

1×

3 2
0 0



3 0
0 0
 

 is 

diagonal, while 


 and 


 are triangular, upper and lower respectively. 3 0
1 4



 






 
So far we have been stacking matrices, namely from smaller pieces we have been 
manufacturing larger matrices. But the reverse process is just as easy and valid. We will 
refer to it as blocking a matrix, but there are other names in the literature for 
decomposition of matrices into blocks. In fact any matrix 
can be broken into pieces by just grouping collection of 
rows and columns.  
 
Example 2. Consider the 10  matrix on the right 10×
 
as being broken into blocks of our choosing. One such 

partition is as follows: 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

A A A A

A A A A

A A A A

A A A A



( )11 1

  

 where the 

diagonal blocks are as follows: 44A A= = , , , 

and hence we think of the matrix as partitioned in the following manner: 

22

1 1 0
0 0 1
1 1 0

A
   =     

33

0 1 0 0 0
0 0 1 0 0
1 0 0 1 0
0 0 0 1 1
1 0 0 0 0

A

      =        

1 0 0 0 0 0 1 0 0 0
0 1 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0
0 1 1 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 1 0
0 0 0 0 1 0 0 0 0 1
0 0 0 0 0 0 0 0 0 1

                              
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Of course the decomposition could have been 
arbitrary just as long as we decompose into 
rectangles. In this particular case, we have a 
balanced block decomposition because all 
of the diagonal blocks are square.  
 
Note that one of the advantages of block 
decompositions is the ability to consider the 
partitioned matrix as (block) upper triangular 
since every block below the main diagonal is a 

0 block. 

1 0 0 0 0 0 1 0 0 0 
0 1 1 0 0 0 0 0 0 0 
0 0 0 1 0 0 0 1 0 0 
0 1 1 0 0 1 0 0 0 0 
0 0 0 0 0 1 0 0 0 1 
0 0 0 0 0 0 1 0 0 0 
0 0 0 0 1 0 0 1 0 0 
0 0 0 0 0 0 0 1 1 0 
0 0 0 0 1 0 0 0 0 1 
0 0 0 0 0 0 0 0 0 1 

 
So, in this section we have learned to view matrices as arrays of matrices—and we have 
seen that we have freedom on how to partition or how to stack, and some judgment is 
required when doing so—we will keep exploring this throughout the course. 
 
But now we look at the most fundamental operation on matrices: multiplication. 
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 Matrix Multiplication 
 
The basic ingredient in matrix multiplication, that great contribution from the nineteenth 
century, is the product of a row times a column. It is simple, but powerfully recursive: 

( )

1

2
1 2 1 1 2 2n n

n

 β    β  α α α =α β +α β + +α β     β 

n

n

 

 
It makes sense as long as α β  makes sense for all ii i = 1, ,…  (the n is, of course, 
arbitrary), and as long as we can add the resulting products. Observe the very important 
requirement  

that the number of rows in the column has to be the same as the 
number of columns in the row. 

 
Example 1. The simplest and best-known example of this is simply a row vector of 
numbers times a column vector of numbers,  

( )1 2 3 4 1 2 3 4

a
b
c
d

a b c

     = + + +      

d

d

. 

 
This important operation developed first as a vector with vector operation, and it is 

usually encountered first as the important dot product of two vectors: in fact if  

and , then one defines their dot product by 

1
2
3
4

u

     =       

v

a
b
c
d

     =       
1 2 3 4u v a b c⋅ = ⋅ + ⋅ + ⋅ + ⋅ . 

Observe that from the matrix point of view this would be written as u  (without the dot 
since juxtaposition denotes matrix multiplication), so  

vΤ

u v u vΤ⋅ = . 
 
But how do we multiply two matrices A and B? Suppose simply as in the following 
example that A has just two rows and B has only one column—so we are in fact very 
close to the example above, then we multiply each row of A by the column of B. 
 
Example 1 Revisited Again. This example should provide evidence for the reasons 
behind matrix multiplication. As before suppose the inventory is given by the matrix 
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5 3 2
8 4 1

V
 =   


, and suppose that the price of a sedan is 15 (in thousands of dollars), of an 

SUV is 24 and that of a coupe is 18. Then the amount of inventory in Hondas is given by 

the first entry of the product 
  15

1835 3 2
24

2348 4 1
18

                    

= 
, so the dealership has $183,000 in 

Honda inventory and $234,000 in Toyotas. 



 
 
In general, suppose A is  and B is m n× p q× . We think of the first one, A, as the vertical 
stacking of its rows while the second one, B, as the horizontal stacking of its columns. 
Then we take the product of every row of the first factor times any column of the 
second one. But in order for us to be able to multiply a row of A with a column of B, we 
must have agreement of size of a row with a column, namely, we must have that  

n p= . 
In other words, in order to be able to multiply two matrices,  

the number of columns of the first factors has to be the  
same as the number of rows of the second factor. 

In symbols, if we let A=

1

2

v

v

vm

Τ

Τ

Τ

            

 and B u , then  ( )1 2u uq=

1 1 1 2 1

2 1 2 2 2

1 2

v u v u v u

v u v u v u
AB

v u v u v u

q

q

m m m

Τ Τ Τ

Τ Τ Τ

Τ Τ Τ

      =          q

j



. 

 
So their product is of size m , the number of rows of the first factor by the number of 
columns of the second factor. And in short, what is the -entry of the product, the dot 
product of ith row of the first factor with the jth column of the second factor. 

q×
i−

 

Example 2. We do a simple numerical example: let A , and let B . 

Note that 

1 2 3
4 5 6
 =  

a b
c d
e f

   =     

AB  makes sense, and it will be of size : . 

But also BA  makes sense, but it is 3 : . 

2×

a b
c d
e f

2
4 5

AB
a c
a c

= 

4 2 5 3
4 2 5 3
4 2 5 3

a b a
c d c
e f e

+ +
+ +
+ +

2 3
6
e
e

+ +
+ +

6
6
6

b
d
f

+
+
+

  

2 3
4 5 6
b d f
b d f
+ +
+ +

  

3× BA
= 
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This example illustrates one of the most shocking features of matrix multiplication: 
the order of multiplication matters. 

 
And in that example it was patently obvious since the sizes of AB and BA were different. 
But in the next example, we see that there are deeper issues than just size. 
 

Example 3. Let  and let B . Then , but BA , and 

we have two very worthwhile observations:  

1 1
1 1

A
 =  













) )

1 1
1 1

−
−

 =  
2 2
2 2

AB
−
−

 =  
0 0
0 0
 =  

 
 first AB and BA may be different even if their sizes are the same. 

 
 a product, BA in our case, can be 0 without either of them being 0. 

 
Neither of these occurs when considering multiplication of numbers. 
 
So far we have stressed the rows of the first factor times the columns of the second factor 
way of viewing matrix multiplication—but there are also some other very useful ways to 
view matrix multiplication. The most elemental way to view matrix multiplication 
abstractly is the entries-of-the-matrix way. Namely, let A be , B be n , so that 

 will be . Suppose ,  and M , then we can simply 
state that 

m n×
( ikm=

p×
M AB= m p× ( )A ija= (B jkb=

1 1 2 2
1

n

ik i k i k in nk il lk
l

m a b a b a b a b
=

= + + + =∑ . 

 
Observe that if a matrix A is to be multiplied by itself, it is necessary and sufficient that 
the matrix be square since the number of rows of the second factor has to be the same as 
the number of columns of the first factor. Of course, one refers to A times A, AA , by 2A  
and calls it the square of A, or A squared. 
 
Example 3 Revisited. Let us return to the influence network 

where the adjacency matrix was given by A=

0 1 1 0 0
0 0 0 1 0
0 1 0 0 1
1 1 1 0 0
1 1 0 1 0

             

. 

Note that since A is  we can in fact compute 
.  

5 5×
2M A A A= × =

C A

E

M

J

 
We can ask what would be the meaning to the square of the matrix. But before we do that 
we need to discuss the notion of path. Suppose we have a sequence of edges: 

→ →A E C . This is called a path from A to C of length 2, or a 2-path. Similarly, the 
sequence J→A→E→C would be a path from J to C of length 3, or a 3-path, and so on 
we could extend the concept to paths of any length. It is not relevant whether the vertices, 
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or the edges are distinct or not. Thus for example, J→C→ J C is a path from J to C of 
length 3. It is common to call a path a cycle if the ending vertex is the same as the 
beginning vertex: for example, J→C→ J is a 2-cycle. 

→

5 53a23a a+ + 14 4a a+ +

i

2

a a22a

→

44a+

3

45 52+

2, 2− A

i

= ×

1 1i k

→

2 2ka b

B=

)t= = = =

)

1l

a
=

n

ktc∑ ∑

A C

23 3× 4×
AN

 
What is the meaning of the 1, entry of M ? Note that this entry corresponds to Alyson-
Emma. We have that  

3−

13m = 11 13 12 13 33 3 1 0a a a a a = , 
 
We know iaA  is 0 unless →A  and similarly ia E  is 0 unless i→ E . If either of these 
two terms is 0, i ia aA E  contributes nothing to the sum, and otherwise the contribution is 

. The sum is counting then the number of times we have 1 1 1= × i→ →A E , in other 
words the number of 2-paths from A to E. Hence M  counts the number of 2-paths 
between any two vertices. So why is the 1 entry of M  equal to 0? Because there was 
no way for Alison to influence Emma via a third person, there was no 
Alison ?→Emma, since the only other person Alison influenced was Carol and Carol 
had no direct effect on Emma.  

,3−

→

 
On the other hand, 

42 41 12 42 43 32 42m a a a a a a= + + 2= . 
 
This happens because we have Jason Alison Carol and Jason→Emma Carol, so 
there were two ways for Jason to influence Carol via another person.  

→ →

 
By similar considerations, the position of 4 A A  is 3 since we have 3 ways to 
travel from Jason to Carol via exactly 3 arrows: J→A E→C, J C J→C, and 
J→E→M→C. 

→ →

 
 

One obvious consequence of the expression m a is 

the fundamental fact that matrix multiplication is associative: let A be , B be 
, and C be 

1

n

ik in nk il lk
l

b a b a b
=

= + + + =∑
m n×

n p× p q× . Let M , and N , then MC  and A BC= AN  both make sense, 
and the wonderful fact is that they are equal is true, since  

( ) ( ( )
1 1 1 1 1 1 1

p p p pn n n

ik kt il lk il lk k il lk kt il lt
k k l k l k l

m c a b a b c b c a n
= = = = = = =
∑ ∑ ∑ ∑∑ ∑  

from which we get the tremendously useful fact that  
( ) (B C A B=  

and as was mentioned above, this is called associativity of multiplication. 
 
For example, suppose A is 5 , B , and C is . Then  is 5 , and 

 is 3 , so MC  and 
× 2 M AB= 2×

N BC= 4×  are both 5 , but more than just the same size, as 4×
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stated above they are equal. To consider just one entry, say the 5 position in both 
matrices equals 

, 4−

53 32 2b+

1× =

1 350× =

1 1100× =

1 1525× =

1 1275× =

51 11 14 51 12 24 52 21 14 52 22 24 53 31 14 4a b c a b c a b c a b c a b c a c+ + + + . 
 
 
Observe that because we do not have commutativity, the order of the factors definitely 
matters in general, but that because we have associativity, the order in which we perform 
the multiplications does not matter as long as we respect the order of the factors. And this 
choice can be of great consequence as the following example will illustrate. 
 
Example 4. How many single number multiplications in a matrix multiplication? 
Let A be , B be , and M , which is be . Then since  m n× n p× A= B m p×

1 1 2 2
1

n

ik i k i k in nk il lk
l

m a b a b a b a b
=

= + + + =∑ ,  

it is clear that it takes n multiplications to compute one entry of M, and since M has mp  
entries, it will take  multiplications to compute the product.  mnp
 
Let us consider what associativity does for us in the following case: suppose M  is a 

 matrix, while  is 10 ,  is 
1

105× 2M 20× 3M 520 ×  and M  is 54 1× . How many ways can 
we accomplish the multiplication M M ? And how many multiplications will 
it take in each case? We can only multiply two matrices at a time, and we have the 
choices on the table as well as the number of multiplications it takes to do each of them. 

1 2 M× × 3M × 4

4

4

( ) (1 2 3 4M M M M× × × ) 5 10 20 20 5 1 5 20 1200× × + × × + ×  

( )( )1 2 3 4M M M M× × × 20 5 1 10 20 1 5 10× × + × × + ×  

( )( )1 2 3M M M M× × × 10 20 5 10 5 1 5 10× × + × × + ×  

( )( )1 2 3 4M M M M× × ×  5 10 20 5 20 5 5 5× × + × × + ×  

( )( )1 2 3M M M M× × ×  10 20 5 5 10 5 5 5× × + × × + ×  

and we can see there is great difference between the numbers! Associativity is wonderful, 
it allows us to pick the second option. 
 
 
Example 5. Powers of a Square Matrix. We saw before that for any square matrix A, 
we can let 2A AA=  denote the square of that matrix. However, to even discuss the cube, 
we needed associativity, since 3A  could conceivably be defined in two different ways: 
( )AA A  or ( )A AA

3

, but fortunately, we do not have to make that distinction, and thus we 

can define A AAA=  without any problems. Similarly, 4A AAAA= , and in general for 
any positive integer n, one can define A AA An

n
= . Observe however that we do not 

have meaning yet for 0A , nor do we have meaning for other exponents such as negative 
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integers like 1A− , nor for fractional exponents such as 
1
2A . Note however, that because of 

associativity, we do have the fundamental law of exponents: 

3

Mk

,1−

→ LV

2,3−
LV

+

A A An m n m+=  for any positive integers n and m. 
 
Now that we have powers we can revisit another previous example. 
 
Example 2 Revisited. Let us return to the communication network example. Extending 
the idea explained in the previous example, if M is the adjacency matrix, then M  counts 
the number of 2-paths between any two vertices, M  counts the number of 3-paths 
between vertices, M  the number of 4-paths, etcetera. Hence we have that  

2

4

for any positive integer k, the position of  denotes the number of 
k-paths from vertex i to vertex j. 

,i j−

 
We can compute the first three powers of the 
adjacency matrix A from Example 2. They are 
 

 

   A         2A         3A     
0 1 0 0 0 0 0 0 0 0  1 0 1 0 0 0 0 0 0 0  0 2 0 1 0 0 0 0 0 0 
1 0 1 0 0 0 0 0 0 0  0 2 0 1 0 0 0 0 0 0  2 0 3 0 1 0 0 0 0 0 
0 1 0 1 0 0 0 0 0 0  1 0 2 0 1 0 0 0 0 0  0 3 0 3 0 1 0 0 0 0 
0 0 1 0 1 0 0 0 0 0  0 1 0 2 0 1 0 0 0 0  1 0 3 0 3 0 1 0 0 0 
0 0 0 1 0 1 0 0 0 0  0 0 1 0 2 0 1 0 0 0  0 1 0 3 0 3 0 1 0 0 
0 0 0 0 1 0 1 0 0 0  0 0 0 1 0 2 0 1 0 0  0 0 1 0 3 0 3 0 1 0 
0 0 0 0 0 1 0 1 0 0  0 0 0 0 1 0 2 0 1 0  0 0 0 1 0 3 0 3 0 1 
0 0 0 0 0 0 1 0 1 0  0 0 0 0 0 1 0 2 0 1  0 0 0 0 1 0 3 0 3 0 
0 0 0 0 0 0 0 1 0 1  0 0 0 0 0 0 1 0 2 0  0 0 0 0 0 1 0 3 0 2 
0 0 0 0 0 0 0 0 1 0  0 0 0 0 0 0 0 1 0 1  0 0 0 0 0 0 1 0 2 0 

 
Why is the 1 entry of 2A  equal to 1? If without loss, we let the first three consecutive 
cities in the picture be: LA, LV (Las Vegas), and AQ (Albuquerque), then we can say 
because we can go , and that is the only way we can go from LA to LA 
via a 2-path, while the 1  entry is also 1 because we can do 

→ →LA LALV
,3− → →LA LV A

→ →
Q , while 

the entry is 2 because we can do the following: 2, 2− LV LA LV  and 
.  → AQLV

 
In 3A , the entry is 3 because we can do the following: → → →LV AQ LV AQ

1

n

l=
∑

, 
 and . → → →LV LA AQ → → →LV AQ DV AQ

 
We get another immediate benefit of the entry-per-entry view of multiplication. Similarly 
to the argument for associativity, we get an argument for distributivity. Let A be , B 
be , and C be . Then since  

m n×
n p× n p×

( )
1 1

n n

il lk lk il lk il lk
l l

a b c a b a c
= =

+ =∑ ∑ , 
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we obtain the fundamental: 
( )A B C AB AC+ = + . 

Just as easy is the other equation if we assume the appropriate sizes for the matrices:  
( )A B C AC BC+ = + . 

 
 
By now we have seen two ways to visualize matrix multiplication—the row times 
column way and the entry-by-entry way. We now visit yet another way of multiplying 
matrices and that is columns by rows!! Let us return to the original definition of matrix 
multiplication: 

( )

1

2
1 2 1 1 2 2n n

n

 β    β  α α α =α β +α β + +α β     β 

n

n

 

and consider the special case when one of the factors is made up of scalars, in other 
words one of the factors is a vector. For example suppose that the β  are scalars, then 
since scalars commute with anything, we could rewrite the product in the form  

's

( )

1

2
1 2 1 1 2 2n n

n

 β    β  α α α = β α +β α + +β α     β 

 

and we would be looking at an important construct—a linear combination of the α , a 
fundamental concept that will stay with us throughout the course.  

' s

 
 
If , , u1 u2 …,  are vectors then any expression of the form un

a a an n1 1 2 2u u u+ + +"  
where , , …,  are scalars is called a linear combination of u , u , 1a 2a na 1 2 …, u . Note 
that 0 is always a linear combination by letting all scalars equal 0. 

n

 
 
Let us start with an example. 

Example 6. Consider the following product: ( ) . Note 

that we do not need to specify that a, b, c and d are numbers, they could be column 
vectors in their own right. More concretely, consider now the product of a matrix times a 
column vector: 

1
2
3
4

2 3 4a b c d a b c d

     = + + +      
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1
2
3
4

a b c d
e f g h
i j k l

       =           

1
2
3
4

a b c d
e f g h
i j k l

                             =                                               

1 2 3 4
a b c d
e f g
i j k

                   + + +                           
h
l



2 3 4
2 3 4
2 3 4

a b c d
e f g h
i j k l

+ + +
+ + +
+ + +

   =     
. 

 
 
Thus, when we multiply a matrix times a vector, we always obtain a linear combination 
of the columns, so we are visualizing this product as the columns of the first factor 
times the rows of the second factor. 
 

Reiterating, if , then (A u u u= 1 2 " n ) Ax , for any vector , is a linear 

combination of the columns of A, 

1

2x

n

a
a

a

      =        
a a an n1 1 2 2u u u+ + +"

1

2

n

a
a

a

  
  

. And conversely any linear 
combination  of vectors can be thought of as a matrix times a 

vector if we let  and . Thus, regardless of the size of the 

vectors, . 

a a an n1 1 2 2u u u+ + +"

(A u u u= 1 2 " n

( )
7
3

4
4w u v w −

+ = 

) x

= 

7 3u v−

Example 7. More concretely, consider  
1 3 5 7

1
2 4 6 8

2
3 6 9 12

3
4 8 12 16

4
5 10 15 20

                     

1 3 5
2 4 6
3 6 9 1
4 8 12 16
5 10 15 2

1 2 3 4

                                  = + + +                                                 

7
8
2

0



50
60
90

120
150

      =        

. 

 
 

Example 8. Diagonal Matrices. Let A=

1 3 5 7
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20

             
1 0 0
0 2 0
0 0
0 0 0

−

= 

. What happens to A when we 

multiply it by a diagonal matrix? Suppose D . Then when we multiply 

0
0

1 0
0

  
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1 6 5 0
2 8 6 0
3 12 9 0
4 16 12 0
5 20 15 0

AD

−
−
−
−
−

      =        

A u=

, and we should notice what has occurred, every column of A has 

been multiplied by the respective entry in D.  

1 1 1Ax ua=

3 3 3Ax ua= 3x

( )A u u u= 1 2 " n

u v w −


 
 

Abstractly, let  and let us consider ( u u1 2 " n ) 1Ax  where . Easily, 

we get 

1

1

0

0

x

a     =        

. Similarly, if , then 2

0

0

a

  

2x

= 

2 2 2Ax a= u . Continuing in this fashion, 

 if has zeroes in every position except the third entry which is , and in 
general, with the obvious extension of the notation, 

3a
Ax ui ia i=

0 0
0 0

na

  

. By simple stacking we 
get the following fact about multiplication with diagonal matrices. Let 

 and let D  be a diagonal matrix. Then  

1a= 

2

0 0

a

AD= ( )1 1 2 2u u un na a a . 

Thus, ( ) . (
7 0 0
0 3 0
0 0 4

7 3 4u v w
 = − 

)

 
One can use the idea of linear combination of the columns to mentally multiply matrices 
especially if one of the factors is a ( matrix. We gain revisit the communication 
network example. It actually stemmed from the 1950's, when the AT&T Company had 
decided to build 10 relay station network distributed throughout the country. The idea 
was to link these stations in order to establish a national communication network. 
Naturally, there were two opposing forces to contend with: the cost of linking pairs of 
stations (regardless of distance) versus the desire for a solid network, one not vulnerable 
to breakdowns, nor to long relays, circuit overflow, or even sabotage. A balance had to be 
achieved between these two contending positions. 
One of the possible solutions was the one previously 
looked at in Example 2:  

)0,1 −
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It is easily shown that in order to have a connected network 9 edges were minimal, so 
indeed this network was optimal in cost, but certainly susceptible to long relays, and 
fragile if one station breaks down. The long relays can easily be observed in the graph, 
but they are also reflected by the powers of the adjacency matrix. Since there is not path 
from LA to NY shorter than length 9, the first power of A in which the position 
is not 0 is the 9th power, 

, −LA NY
9A . So there were other networks 

considered. 
 
Example 2 Extended. Here is another 9-edge network: 
 
This Kansas City model has for its adjacency matrix (if we 
choose KC has the first vertex)  

B=

0 1 1 1 1 1 1 1 1 1
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 0

                                         



 

. To square this matrix mentally is quite easy. We see 

that the first column of the square is Bu  where u  is its first column, so it is the sum of 
all columns but the first one, while all other columns of B  are just copies of the first 
column of B. So  

1 1
2

2B =

9 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1

                              

—all head, no hands. 

Needless to say, the KC model has short relays, but KC is certainly 
overloaded, and a break down there (due to malfunction or 
sabotage) would be a total disaster in communication. 
 
It would be perhaps unfair to leave the story unfinished. The 
engineers at AT&T proposed as a solution a graph stemming from 
the 19th century known as the Petersen Graph, Its virtues were 
clear:  
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• only 15 edges,  
• every vertex is balanced (3 edges from each), 
• longest relay is 2, 
• safe from one or two vertex breakdowns. 

 
Some of its efficiency is reflected by the adjacency matrix and its square: 

C=

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0

                              

 and 2C =

3 0 1 1 0 0 1 1 1 1
0 3 0 1 1 1 0 1 1 1
1 0 3 0 1 1 1 0 1 1
1 1 0 3 0 1 1 1 0 1
0 1 1 0 3 1 1 1 1 0
0 1 1 1 1 3 1 0 0 1
1 0 1 1 1 1 3 1 0 0
1 1 0 1 1 0 1 3 1 0
1 1 1 0 1 0 0 1 3 1
1 1 1 1 0 1 0 0 1 3

                              

. 

 
We see its efficiency since there are no ones wasted between the adjacency matrix and its 
square. In other words, if we let Jn   denote the  matrix composed of only 1’s, then 
we have that . 

n n×
2

10 102C C J I+ = +
 
Unfortunately, the U.S. government was not happy 
with the explanations for the Petersen graph and 
instead they required for the complete graph to be 
built which has 45 edges, and the matrix 10 10J I−  for 
its adjacency matrix. 
 
 

But all we have stated about columns in the previous paragraphs can also be stated about 
rows, and the easiest ways to understand this switch is via a theorem about transposes.  
 
Suppose A is  and B is , then we can certainly multiply 8 5× 5 7× AB  and obtain a matrix 
of size 8 . Now 7× AΤ  is 5  and B  is , so 8× Τ 7 5× A BΤ Τ  does not make sense, but 

 does and it is of size 7 —and what one may suspect happens indeed does. All 
that is basically needed for the proof is the key observation that for vector of the same 
size: 

B AΤ Τ 8×

v u v u u v uΤ Τ= ⋅ = ⋅ = v . 
The following efficient argument might be convincing. For example, the 5 entry of ,6−

( )AB
Τ is the 6 entry of AB. The latter equals the dot product of the 6th row of A with 

the 5th column of B, which is the same as the dot product of the 5th row of B  and the 6th 
column of 

,5−
Τ

AΤ  which is the entry of B A . Thus, we have 5,6− Τ Τ

 



 22 

Theorem. (Transposes.) Let A be  and let B be n . Then m n× p×
( )AB B AΤ Τ Τ= . 

 
 

Example 9. Let , . Now . Also 

 and B , and although 

A
a b
c d
e f

   =     

2Τ = 

1 2 3
4 5 6

B
 =  

1 4
5

3 6

  




4 2 5 3 6
4 2 5 3 6
4 2 5 3 6

AB
a b a b a b
c d c d c d
e f e f e f

+ + +
+ + +
+ + +

   =     

A
a c e
b d f

Τ  =   
A BΤ

4 4 4
2 5 2 5
3 6 3 6

a b c d e f
a b c d e f
a b c d e f

+ + +
+ + +
+ + +

  

Τ

2 5
3 6

 makes sense in this case, the result 

would be a 2  matrix. Rather it is  which provides a 

 matrix, the transpose of the original product. 

2×

3 3×

B AΤ Τ =


 
Thus from the theorem, we immediately have the corresponding claim about a row vector 
times a matrix A. The resulting vector will be a linear combination of the rows of A. For 
example: 

( )1 1 2 0 3−

1 3 5 7
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20

             

( ) ( ) (1 3 5 7 2 4 6 8 3 6 9 121 1 2= − + )  

( ) (4 8 12 16 5 10 15 200 3+ + )= ( )20 41 62 83 . 
 
Thus, when we multiply a matrix times a vector, we always obtain a linear combination 
of the columns, or the rows as the case may be. 
 

Example 10. Let , and if we think of A
a b
c d
e f

   =     

1

2

3

v

v

v

A

Τ

Τ

Τ

    =      

, then 

( ) ( ) 1 21 2 3 2 3 2 3 1 2 3 3A v va c e b d f Τ Τ= + + + + = + + vΤ . 
 
 
Example 11. Diagonal Matrices II. If we then multiply a matrix on the left by a 
diagonal matrix, the end result will be a matrix in which the rows have been multiplied 
by the corresponding entries of the diagonal matrix. E.g.,  

1 0 0 0
0 1 0 0
0 0 3 0 3 3 3
0 0 0 0 0 0 0

a b c a b c
d e f d e f
g h i g h i
j k l

− −
                =                     

− −


. 
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If A=

1 3 5 7
2 4 6 8
3 6 9 12
4 8 12 16
5 10 15 20

             

 and E , then EA , every row 

of A has been multiplied by the respective entry in E.  

1 0 0 0 0
0 3 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 2

−      =        

=

1 3 5 7
6 12 18 24
0 0 0 0
4 8 12 16

10 20 30 40

− − − −             

 
 
In particular, this finishes explaining the name identity matrix for I , because it does act 
like 1 does for numbers—namely, for any  matrix A, 

n

m n×
I A AI Am n= = . 

 
In particular for any square matrix A of size n, I A , and thus just like we do for 
numbers, one defines 

AI An n= =
0A I=  for a square matrix where the I is of the same size as A. Note 

that by this definition the fundamental law of exponents has been extended: 
A A An m n m+=  for any nonnegative integers n and m. 

 
Example 4 Revisited. Let us recall that in that example you were 
interested in dinner arrangements for six friends, and thus you had 
come up with the following incidence matrix M: 
 
 
In general, what does MM  compute? As usual, it is the product of a 
row of M with a column of , but such a column is a row of M, and 
thus for any matrix M, the matrix  has for its entry is the 
dot product of row i with row j. For a (0,1)-matrix, it counts the number of 1’s they share, 

and in fact for the matrix above, we get:  , and this matrix reflects the 

fact that friends A and B will have two dinners together, and so will C & D, and E and F. 

Τ

MΤ

MMΤ ,i j−

1 1 1
1 1 1
3 2 1
2 3 1
1 1
1 1

3 2 1
2 3 1
1 1 1
1 1 1
1 1 3 2
1 1 2 3

             

1 1 1 0 0 0
1 1 0 1 0 0
1 0 0 0 1 1
0 1 0 0 1 1
0 0 1 1 1 0
0 0 1 1 0 1

m t w t f s

 
 
 
 
 
 
 
 
 
  

A
B
C
D
E
F

 
Note that for any matrix M,  

MMΤ  is a symmetric matrix 
since  

( )MM M M MM
ΤΤΤ Τ Τ= = Τ . 

Dually, for any matrix M,  computes the dot product of any two columns of M, 
and it is also symmetric. 

M MΤ
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Maybe it would better to have 7 friends. In that case, we have 

 pairs to take care of, and still 3 per night, so it will take 

7 nights minimum. Can it be done in 7 nights? Yes, and the 
solution is again basically unique. Here's the incidence matrix: 

7
2
    

= 21
1 1 1 0 0 0 0
1 0 0 1 1 0 0
1 0 0 0 0 1 1
0 1 0 1 0 1 0
0 1 0 0 1 0 1
0 0 1 1 0 0 1
0 0 1 0 1 1 0

m t w t f s s

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

A
B
C
D
E
F
G

 
—which is in some ways superior to the 6 friends set up in that 
any two friends have dinner together exactly once. And it only 
cost one more dinner to take care of one more friend. And indeed 
that efficiency is illustrated when we compute M M , 
and we see very little waste! 

Τ
7 72I J= +

 

It would not be beneficial to have 8 friends. We have now 
 8
2
 

= 28 pairs to take care of, 

and being able to take care of at most 3 a night, it will take at least 10 nights to cover our 
scheme. Since we have to give at least 3 more dinners to take care of just one more 
acquaintance we will cold-bloodedly drop him. As to whether to go with 6 or 7 friends 
we will leave for you to decide.  



 
 
Example 12. Things that do commute. We have learned that in general matrices do not 
commute. However, it is also true that some times matrices do. This following are all true 
for an arbitrary square matrix A. We have clearly 

• A commutes with I and A. 
More generally,  

• A commutes with all of its powers because of associativity: AA An n= A . 
• If A commutes with B and C, then by distributivity, it commutes with B :  C+

( ) ( )A B C AB AC BA CA B C A+ = + = + = + . 

Also, since scalars commute with matrices, ( ) ( )A B Aa a= B

6

,  
• if A commutes with B, then it commutes with any scalar multiple of B.  

 
A polynomial of a (square) matrix is a linear combination of its powers. For example, 

 is a polynomial in A. This is reasonable since we can think of that 
expression as nothing but 

32 3 4 5I A A A+ + −
( )Ap  where ( )p x  is the polynomial 3 62 3 4 5x x x+ + − . 

Recall that 0A I= . As an obvious consequence of facts above we get 
 

• A commutes with any polynomial in A. 
 
It may happen that the only matrices that commute with a given matrix are exactly its 

polynomials. For example, let , and let , then  while 0 1
0 0

A
 =     

B
a b
c d
 =   0 0

AB
c d =  
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0
0

BA
a
c

 =   


, so the only way we can have AB BA=  is to have  and a , but 

then B I , a polynomial in A. 

0c= d=

Aa= +b

A

A

 
 
As we leave this fundamental section on multiplication of matrices, we make a few 
closing remarks: although a matrix is not a set of vectors, one can visualize it as 
such, and actually in two different ways, its row vectors, or its column vectors.  
 
We also put the most important properties that do or do not hold for this important 
operation in an easy summary: 
 

Properties that DO necessarily hold 
( ) ( )BC AB C=  associativity of multiplication 

AI A IA= =  identity matrix 
A0 0 0A= =  zero annihilates 

( )A B C AC BC+ = + distributivity of  multiplication 

( )B C AB AC+ = + distributivity of multiplication 

 
Properties that do NOT necessarily hold 

AB BA=  commutativity of multiplication  
If AB 0= , then A 0=  or B 0= cancellation 
If AB AC= , then B C  = cancellation 
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 Stacking, Blocking & Matrix Multiplication 
 
Let us start by recalling the beauty and power of the definition of a row times a product:  

( )

1

2
1 2 1 1 2 2n n

n

 β    β  α α α =α β +α β + +α β     β 

n . 

This definition did not depend on the nature of the components. Namely it is immaterial 
how we view the components of the vectors or matrices that we are multiplying, the end 
result is the same. 
 
And of course we saw from its inception that matrix multiplication relied on stacking for 
its definition. Specifically for any matrix product one is just stacking rows and columns 
to build that product. Hence the following stacking rules are perfectly obvious: 
 

 Let A be , B be m n× p n× , and C be . Then obviously, n q× AC  and  

make sense, but 

BC
A

C
B

    also makes sense, and then  

A AC
C

B B

      =         C
. 

Note we can even see this product as a  matrix times a 1 . Thus in particular some 

interesting special cases are: 

2 1× 1×
A AC

0 0

     
C

  
 =

  
 , or 

A AC
C

I C

    =     



 . For example 

1 2 2 2
3 4 3 4 3 4
1 0
0 1

a c b d
a c b d
a b
c d

a b
c d

+ +
+ +

            =                





. 

 
 

 Let A be , B be , and C be . Then obviously, m n× n p× n q× AB  and AC  
make sense, but ( )A B C  also makes sense, and then  

( ) ( )A B C AB AC= . 
Again we can see this product as a 1  times a 1 , and similar special cases hold: 1× 2×
( ) ( )A B 0 AB 0=  or ( ) ( )A B I A= AB . For example 

1 0 1 2 3 4 2 5 3 6
0 1 4 5 6 4 2 5 3 6

a b a b a b a b a b
c d c d c d c d c d

+ + +
+ + +

      =         

. 

 
By combining the previous two rules one has then  
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 Let A be , B be m n× p n× , C be , and D be . Then obviously, n q× n r×

AC , AD , BC  and BD  all make sense, but so does (C D)A

B

   , and then  

( )A AC AD
C D

B BC

      =         BD
. 

For example   

1 2
3 4
1 0
0 1

       

1 0 1 2 3
0 1 4 5 6
  =  

1 2 1 2 1 2 3
3 4 3 4 4 5 6

1 2 3
4 5 6

I

I I

                          =              
1 2 9 12 15
3 4 19 26 33

1 0 1 2 3
0 1 4 5 6

                  =                     

1 2 9 12 15
3 4 19 26 33
1 0 1 2 3
0 1 4 5 6

           

. 

 
But by extending on the last three rules, we get the following block multiplication rule: 

 Let A be , B be m n× p n× , C be , and D be m q× p q× . Let X be , Y 
be , Z be , and W be . Then all expressions in the following 
equation make sense and the equation is valid: 

n r×
q r× n s× q s×

A C

B D

     
X Z

Y W

     
AX CY AZ CW

BX DY BZ DW

 + + =    + + 
. 

Example 1. Let M  and let . Then we can visualize M and N as 

 matrices: , so 

1 1 1
0 0 3
0 0 3

   =     
( )1 1

0 0
0 0

M
=       

1 1 1 2
1 1 3 4
0 0 1 1

N
   =     

2 2×
1

3
3

      

A C

B D

 =    

)

  

M where , , , 

and  while , so 

( )1 1A= 0 0
0 0

B
 =    ( )1C=

3
3
 =   

D
( )

1 1
1 1

0 0

N
  =  (

1
3

1


  

2
4

1

   X Z
N

Y W

 
 

 X=   where , , 

, and , now  

1 1
1 1
 =   

Y ( )0 0=

1 2
3 4
  

Z =  ( )1 1W=

( ) ( )( ) ( ) ( ) (1 1
1 1

1 1 1 0 0 2 2 0 0 2AX CY
 + = + = + =   )2

)



 

( ) ( )( ) ( ) ( ) (1 2
3 4

1 1 1 1 1 4 6 1 1 5 7AZ CW
 + = + = + =  

 

( )0 0 1 1 3 0 0 0 0 0 0
0 0 1 1 3 0 0 0 0 0 0

0 0BX DY
                   + = + = + =                            

 



 28 

( )0 0 1 2 3 0 0 3 3 3 3
0 0 3 4 3 0 0 3 3 3 3

1 1BZ DW
                  + = + = + =                           


 

and we see that  . 
AX CY AZ CW

BX DY BZ DW

 + +  =   + + 

( ) ( )2 2 5 7 2 2 5 7
0 0 3 30 0 3 3
0 0 3 30 0 3 3

MN

        = =                        
 
But, as always, care has to be given to the order of the multiplications. 
 

The key is that the sizes have to make sense—but once they do, one 
is free to block or stack any way one wants. 

 
And the theorem below further clarifies the generality of block multiplication. 

Theorem (Block Multiplication). Let M and N be such that  makes 

sense. Suppose 

MN

M=
A C

B D

     
 and N=

X Z

Y W

     
 are in block decomposition 

form. If AX  makes sense, then we can block multiply , in other words: MN

MN=
A C

B D

     
X Z

Y W

     
AX CY AZ CW

BX DY BZ DW

 + + =    + + 
. 

Proof. Suppose that M is p q×  and N is . Furthermore assume A is  and X is 
. Then we easily gather the following information 

q r× k m×
m n×

Matrix B C D Y Z W 
Size ( )p k m− ×  ( )k q m× −  ( ) ( )p k q m− × − ( )q m n− × ( )m r n× −  ( ) (q m r n− × − )

 
But then AX  and CY  are both of size , so k n× AX CY+  is of the same size. Similarly, 
AZ C+ W BX,  and BZ  all make sense, and so by  we are done.  DY+ DW+
 
 
A particularly interesting case of the theorem is that of powers of a square matrix.  

Corollary (Balanced Block). Let M be a square matrix and suppose 

M=
A C

B D

     
 where A is square. Then 2M =

2

2

A CB AC CD

BA DB BC D

 + +     + + 
. 

 
 
Example 2. Let A be the adjacency matrix of the Petersen graph. So we know that A is a 

 symmetric ( matrix with 3 ones in each row. Also 10 10× )0,1 − 2
10 102A A I J+ = + . 

Consider the matrix 
0

A 1
Τ

  

102 2I J

1Τ

+

M  where 1 denotes a vector of all ones. In this case, for 

the stacking to be possible, it is a vector of size 10. Then by block multiplication 

, so . 

1
= 

10

0
1 = = 

2
10 3

3 13 1
AA J

1Τ

  −+  
2M 

3  0
1 10 102 2 2I J

M M
1Τ

++ = 
4

4 10
1  
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Another nice application of block multiplication is the following theorem. 
 
The previous example illustrated one of the powerful applications of block 
decomposition, the ability to prove theorems like the following—but before we cite it, 
we will always assume when in an abstract discussion when we multiply matrices, 
the sizes are compatible. 
 

Corollary (Block Upper Triangular Matrices). Let M and N be such that 

 makes sense. Suppose MMN =
A C

0 D

     
 and N=

X Z

0 W

     
 are in block 

upper triangular form. If AX  makes sense, then their product is also in 
(block) upper triangular form. Moreover, the diagonal blocks of the 
product are the respective products of the diagonal blocks. 

Proof. If we take 
A C

0 D

    and 
X Z

0 W

   , then by the theorem, their product is given by 

AX AZ CW

0 DW

 +     
, and our claim is proven.  . 

 

 
The example above was already an illustration of the last corollary. But we should also 
emphasize that there is nothing special about the  form of the matrix—the same 
would be true for a 3 , , etcetera. 

2 2×
3× 4 4×

 
Recall that we observed before that a matrix in block form can be multiplied by itself 
only if the decomposition is balanced, in other words only if the diagonal blocks are 
square. But the theorem tells us that if such as decomposition is upper triangular, the 
square of the matrix will also be so.  
 
 
As another illustration of the theorem, consider the matrix from Example 3 above. It is a 

, but it can be viewed as a 4  (balanced) block decomposition as we saw in that 
example, and so its square will also be (block) upper triangular, and so will its cube.  
10 10× 4×

 
M   2M   3M  

1 0 0 0 1 0 1 1 0 0  1 0 0 0 2 1 2 3 2 3  1 0 0 0 5 4 3 7 5 14
0 1 1 1 0 0 0 1 0 0  0 3 3 2 1 1 1 4 2 1  0 8 8 5 5 6 3 14 8 11
0 1 1 0 0 1 0 1 1 0  0 2 2 1 2 2 0 4 2 3  0 5 5 3 6 4 3 11 6 13
0 1 1 1 0 0 1 1 0 0  0 3 3 2 1 2 1 5 3 2  0 8 8 5 7 7 3 16 9 15
0 0 0 0 0 0 1 0 0 1  0 0 0 0 0 1 0 1 1 2  0 0 0 0 2 1 0 2 1 5
0 0 0 0 1 0 0 1 0 0  0 0 0 0 1 0 1 1 1 2  0 0 0 0 1 2 1 2 2 7
0 0 0 0 0 1 0 1 1 1  0 0 0 0 2 1 0 2 1 4  0 0 0 0 3 1 2 3 2 10
0 0 0 0 1 0 0 1 1 1  0 0 0 0 1 1 1 1 1 5  0 0 0 0 2 2 1 3 2 10
0 0 0 0 0 1 0 0 0 2  0 0 0 0 1 0 0 1 0 2  0 0 0 0 1 0 1 1 1 4
0 0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0 0 0 1  0 0 0 0 0 0 0 0 0 1

 



 30 

Because it is true for block triangular matrices, then it is also true for  
 

Corollary (Triangular Matrices). Let M and N be square of the same size. 
 If M and N are upper triangular, then so is their product.  
 If M and N are lower triangular, then so is their product. 
 If M and N are diagonal, then so is their product. 

And in all three cases, the diagonal entries are just the products of the 
respective diagonal entries. 

Proof. The key idea for  is that any upper triangular matrix can be thought of as a block 
upper triangular with only two blocks, and then one proceeds by induction. By 
transposing  one obtains , and  is an immediate consequence of  and .   
 
Induction is one of the major techniques that are used to prove results about matrices. 
We use statement  to illustrate the idea of proving statements by induction. So we 
consider upper triangular matrices M and N. If they are , then it is easily done. Now 

suppose they are 3 , then 

2 2×

3×
A B

M
0 c
 =    

 and 
X Y

z
  

N
0
=   where A and X are  upper 

triangular, and since 

2 2×

AX AY

0

z
cz
+

B =  
MN  we can claim the theorem is true since we 

know that AX is upper triangular with the respective product of the diagonal entries on the 
main diagonal. So now we know the theorem is true for 3 ’s. So let M and N be 4 , 

then 

3× 4×
A B

M
0 c
 =    

 and 
X Y

0 z
  

N  where A and X are  upper triangular et cetera.  =  3 3×

 
In a formal proof by induction one goes from the  case to the  one, and 
thus one proves it for all cases. 

n n× 1n n+ × +1
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 Inverses 
 
In this section we will concentrate almost exclusively on square matrices. Such a matrix 
A is called invertible if there is a matrix X such that AX I XA= = . If such a matrix X 
exists it will be referred to as an inverse of A. The indefinite article an will be proven to 
be definite the soon below. 
 

Example 1. Let  and let 
1 2 3
0 4 5
0 0 6

A
   =     

24 12 2
1

0 6 5
24 0 0 4

X
− −

−
   =     

. Then readily, AX I XA= = . 

Or if , then 
1 0
0 2
0 0

A
= 

0
0
3

  

6 0 0
0 3 0
0 0 2

       

1

6
X=  satisfies AX I XA= = . 

 
 

Inverse Fact #1. The inverse of I is I.  The identity is invertible, and its 
inverse is itself. 

Proof. Trivially, II .  I=
 
 

Inverse Fact #2. The inverse is unique. For any square matrix A, there 
can be at most one matrix X such that AX I XA= = . 

Proof. Suppose that we have that both X and Y work, namely, suppose we have that both 
AX I XA= =  and AY I YA= = . We show that X Y= . The argument is a one-liner: 

 ( ) ( )X XI X AY XA Y IY Y= = = = = .                          
 
Thus, we are entitled to refer to X (provided it exists for a given A) as the inverse of A, 
and, naturally, one refers to it as 1A− . This allows us to extend, for any invertible matrix, 
the fundamental law of exponents: 

A A An m n m+=  for any integers n and m. 
 

Inverse Fact #3. The inverse is really unique. For any invertible matrix 
A, if AX= I , or XA= I , then 1X A−= . 

Proof. Suppose that AX= I , then multiplying on the left by 1A− , we get ( )1 1A AX A I− −= , 

and so ( )1 1A A X− = A− , but that means 1X A−= . Similarly, for the other side.  
 
We should remark that we assumed here that A was invertible. Below we will prove a 
much deeper theorem that drops that assumption. 
 
 

Inverse Fact #4. The inverse of the inverse is itself. Let A be invertible. 

Then so is 1A− , and ( ) 11A A
−− = . 
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Proof. Since 1 1AA I A− = = A− , this is obvious.  
 
 

Inverse Fact #5. The inverse of the transpose is the transpose of the 

inverse. Let A be invertible. Then so is AΤ , and ( ) . ( )1 1A A
− ΤΤ −=

Proof. We have the equations, 1 1AA I A− = = A−

)
, and so if we transpose them, we get 

( ) (1 1AA I A A
Τ Τ− Τ −= = , and so ( ) , done.  ( )1 1A A

Τ ΤΤ −A A I− Τ = =
 

So, for example, if , then , and so ( )
1 2 3
0 4 5
0 0 6

A
   =     

1 0 0
2 4 0
3 5 6

AΤ
   =     

1
A

−Τ =
24 0 0

1
12 6 0

24 2 5 4
−
− −

       
. 

 
Inverse Fact #6. The inverse of a product is the product of the 
inverses in reverse order. Let A and B be invertible. Then so is AB  and 
( ) 1 1 1AB B A

− − −= . 
Proof. Associativity comes to our rescue one more time in a brief argument:  

( )( ) ( )1 1 1 1 1 1AB B A A BB A AIA AA I− − − − − −= = = = . 

Similarly for ( ) .  ( )1 1B A AB I− − =
 
Example 2. Diagonal Matrices. Given the way diagonal matrices multiply, it is clear 
that if all the entries of a diagonal matrix are nonzero, then it is invertible and its inverse 
is the diagonal matrix with the reciprocal of its entries in the respective order. Thus, if 

, then 
2 0 0
0 3 0
0 0 4

A
   =     

1

1
2

1
3

1
4

0 0
6 0 0

1
0 0 0 4

12 0 0 3
0 0

A−

         = =               

0 . After the next fact, one can see that 

the converse is also true, namely, if one of the entries of a diagonal matrix is 0, the 
matrix is not invertible. 
 
Example 3. Permutation Matrices. Let n be a positive integer. A square matrix of size n 
is called a permutation matrix if and only if it is (0,1) and every row and every column 
has exactly one 1. For example, obviously I  is always a permutation. For , there is 

only one other permutation matrix, 
 . For n , besides the identity, we have 5 

others, 

n

1

0 0
1 0
0 1

2n=
0
1 0 

0
1
0






3=




1 0 0
0 0 1
0 1 0

    

 , 
0 1 0
1 0 0
0 0 1

    

 , 
0 1
0 0
1 0

 
 

 , 
1
0
0

  

  and 
0 0 1
0 1 0
1 0 0

  

 . In general, we have 

 There are n  permutation matrices of size n.  !
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The reason for this is that we have n choices for putting the 1 in the first row. But then we 
only have  choices for the 1 in the second row, and then  for the third row, 
etcetera.  

1n− 2n−

 
  Every permutation P is invertible, and in fact P P . 1− Τ=
We just need to argue that PP . But we saw before that PP  is the matrix 
that has the dot product of any two rows of P for its entries while in the main diagonal we 
have the dot product of a row with itself. But since every row of P only has one 1 in it, 
we have 1’s in the diagonal of PP . But also since two rows do not have any 1’s in 
common (there is only one 1 in a column), any two rows have dot product 0, and so we 
get PP . Similarly, for P .  

I P PΤ = =

Τ

PΤ

Τ Τ

IΤ =
 
By simple multiplication we get the following important claim: 

 If A  is  and P is a permutation of size n, then m n× AP  has exactly the 
same columns as A, except they have been rearranged (or permuted) by P. 
And if Q is a permutation of size m then QA  has the same rows as A, 
except they have been rearranged (or permuted) by Q.  

 
As an immediate consequence of , we get 
  If P and Q are permutations of size n, then so is PQ . 
Of course, note that ( ) . ( )1 1 1PQ PQ Q P Q P

− Τ Τ Τ − −= = =
 
Among the permutation matrices, the simplest ones are the swaps, which arise by simply 
swapping (exchanging places) two rows of the identity matrix, or, what is equivalent, two 

columns of the identity. Of course, 0 1
1 0
  

 is a swap. For n , the swaps are 3=

1

0 0
0 1



1 0 0
0 0 1
0 1 0

    

 , 

, and 
0 1 0
1 0 0
0 0 1

       

0 0 1
0 1 0
1 0 0

    

 . There are 6 swaps for n ,  is one of them. 

Observe that all the swaps are symmetric matrices. 

4=

0 0 0
0 0 0 1

1 0
0 0

  



 

Example 4. Is the matrix A=
0 0 2
3 0 0
0 4 0

       
 invertible? Since A PD=  where P  

and , we have that 

0 0 1
1 0 0
0 1 0

   =     

3 0 0
0 4 0
0 0 2

D
   =     

1 1 1 1A D P D P− −= =− − Τ

1
3

1
4

1
2

0 0

0 0

0 0

  

= 

. Observe that A also 
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equals EP  where E . 
2 0 0
0 3 0
0 0 4

   =     

A

u 0=
B 0=
B AC=

Au 0=

( )B C 0− =

a b
c d

 

 


−

0bc− =

4 3
1 2

A
 =   

= 

 
The following fact is easily understood, but its more subtle implications will be further 
appreciated later. Obviously, 0 0× = , but as we have seen before it is possible for the 
product of two matrices to be 0 without either of them being 0. However, when the 
matrix is invertible, it cannot even annihilate a single nonzero vector. 
 

Inverse Fact #7. Cancellation. Suppose A is invertible. Then the 
following hold: 

 If A , then .  u 0=
 If A , then B 0 .  =
 If A , then B C . =

Proof. Suppose , and A is invertible. Then u I . The 
second claim follows by considering each column of B and applying . The last claim 
follows from 

1 1u A Au A 0 0− −= = = =

A .  
 

Inverse Fact #8. The inverse of a . Let . Then 2 2× A
a b
c d
 =   


A  is 

invertible if and only if . If this is the case, then 0ad bc− ≠
1 1

A
d b
c aad bc

− −
−−

 =   
. 

Proof. For any matrix A, 0
0

d b ad bc
c a ad bc

 

− −
=

− −
  



d b a b
c a c d

       

−
−
 =   

. If we assume 

that ad . Then we immediately get that  0bc≠

     

1 1
A

d b
c aad bc

− −
−−

 =   
. 

If, conversely, , then ad 0
d ba b
c ac d

  

−
=

−
    

0
d b
c a

−
=

−
 


, and if A were invertible, then by 

cancellation we would get that 


 which clearly implies A 0= , which is 

clearly nonsense.   





 

Example 5. Let , then 1 1 2 3
1 45

A− −
−
 =   

. 

 

Let . Then the expression ad  is known as the determinant of A
a b
c d
 

bc− A , and it 

will be of some consequence in the future. It is usually denoted by det A . Now we can 
restate the previous fact as 




A is invertible if and only if . det 0A ≠
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As we will see in a future chapter, this is a general theorem about matrices. At present we 
will only extend the theorem to the  case. Consider a  matrix. How is its 

determinant defined? Let 

3 3×
c
f

3 3×

A
a b
d e
g h i

 =  


, then  

det A aei bfg cdh ceg afh bdi= + + − − − . 
 
If the expression seems difficult to remember, one way to encase it is as follows, repeat 
the first two columns, and one can see three diagonals (with three elements each) that go 
from upper left to lower right and another three diagonals that go from upper right to 
lower left: 

a b c a

d e f d

b

e

g h i g h

b

e  

a b c a

d e f d

g h i g h

 

and one can see that the determinant is the sum of the products of the diagonal terms, the 
first set with a positive sign and the second set with a negative sign. For the future, there 
is another way to see this determinant—which we now discuss. We need two things 
though.  
 
First a position in a (square) matrix is even if the sum of the row it is in and the column it 
is in is an even number. Equivalently, a position is even if the row and the column agree 
in parity, they are both even or they are both odd. If a position is not even, then it is odd. 
Note that the main diagonal has all even positions, and also observe that next to an even 

in a row or a column is odd. Thus in a 3 , the positions are as follows, 3×
    

e o e
o e o
e o e

 .  

 
The other idea is that of a subdeterminant. Given a position of a square matrix, if one 
scratches out the row and the column, one obtains a smaller matrix, and one where we 
already know (hopefully) how to compute a determinant, so this determinant is a 

subdeterminant of the original one. For example, suppose we take A
a b c
d e f
g h i

   =     
. Then 

we will build a new matrix by putting in a position the subdeterminant obtained when we 
scratch the row and column of that position. If we do that we obtain the following matrix: 

ei fh di fg dh eg
bi ch ai cg ah bg
bf ce af cd ae bd

− − −
− − −
− − −

       
, 

 
and if we transpose this matrix of subdeterminants, and change the sign of every position 
that is odd, then we obtain the following matrix  
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X
ei fh ch bi bf ce
fg di ai cg cd af
dh eg bg ah ae bd

− − −
− − −
− − −

   =     
. 

 
And the fundamental fact is that  

( )detAX XA A= = I , 
which is straightforward to verify. In particular, if , then A is invertible and  det 0A ≠

1 1

det A
A X− = . 

 
This is the 3  extension of a fact seen about  matrices. Thus we have proven one 
direction of the following 

3× 2 2×

Inverse Fact #9. The inverse of a 3 3 . Let × A
a b c
d e f
g h i

   =     
. Then A is 

invertible if and only if . det 0A ≠

Proof. We saw above that if , then det 0A ≠ 1 1

det A
A X− =  where the matrix is as given 

X
ei fh ch bi bf ce
fg di ai cg cd af
dh eg bg ah ae bd

− − −
− − −
− − −

   =     
,  

but in any case we have that (det )AX XA A= =
det 0A=

I . For the converse, assume, by way of 
contradiction that A is invertible and . But since then AX XA 0= = , we must 
have that X 0= . Now ( ) ( )0 0A 0=i f id fg− = − +

)0

ie fh− + , and so we must 

have that i f . Similarly, (0== A 0i c− = . But now we do have a contradiction 

since we have that 
0
0
1

A 0=
       

, which is impossible if A is invertible.   

 

Example 6. Let , then , and indeed, B  satisfies 
1 4 7
2 5 8
3 6 9

A
   =     

det 0A=
3 6 3

6 12 6
3 6 3

− −
−

− −

   =     
AB BA 0= = .  
 

Let , then det , and indeed,  satisfies 
1 4 7
2 5 8
3 6 10

A
   =     

3

3A=−
2 2 3
4 11 6
3 6 3

B
−

−
− −

   =     

AB BA I= =− . Thus, 1 1

3
A B

−− = . 
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Next we observe an unexpected connection between invertibility and polynomials a 
matrix satisfies. 

Inverse Fact #10. Inverses & Polynomials. Let A  be a square matrix. 
Let ( )p x  be a polynomial that A satisfies, ( )A 0p = . If , then A 
is invertible. 

( )0p ≠ 0

Proof. Suppose ( ) 2
0 1 2

n
np x a a x a x a x= + + + + , and since , . Then 

since 
( )0 0p ≠ 0 0a ≠

( )A 0p = , we have . Dividing by  and isolating 

I, we have 

2
0 1 20 I A Aa a a= + + + Anna+ 0a

21 2

0 0 0

A A AXnnaa a
a a a

− − − − =I A  where = 1

0

1 2

0 0

X I A
a a
a a

− −

1

Ann

a
−= a− − . 

Moreover since X is a polynomial in A, they commute, and so X A−= .  
 
Note that the theorem not only tells us the inverse exists, but also how to find it. 
 
Example 7. Let A  be the adjacency matrix of the Petersen graph. So we know that 

2
10 102A A I+ = + J  and also 10 10 103AJ J J= =

2

A  since there are 3 ones in each row and 
each column of A. Multiplying 10 102A A I J+ = +  by 3A I− , since 

( )3 3A I J AJ− = − J= 0 , we get that ( )( )23 ( )3 2A I A A− + = A− I I , and so 
3 2 23 3 2 6A A A A+ − − A I 0+ = 3 2− , or 2 5 6A A A I 0+ =− − , so  

( )1 21
6 2 5A A A− =− − − I ( ) ( )1 1

6 62 2 5 3I J A A I J A I=− + − − − =− − −3 . 
 
The last claim can also be readily verified given that we know that 2

10 102A A I J+ = + . 
 
We have encountered upper triangular matrices before, we now pursue their invertibility 
properties. The next lemma is very useful 

Lemma. Let 
A B

0 C
M

 =   

1

 be block upper triangular where A and C are 

square (not necessarily of the same size). If A and C are invertible, then so 

is M, and then 
1 1

1

1A A BC

0 C

− −

−

 −  
M− = 

−

. 

Proof. The proof is straightforward. Start by assuming that A and C are invertible. 
Observe that if A is n  and C is m , then B is , and the expression n× m× n m× 1 1A BC− −  

makes sense. But, then  are both trivially 

verified.  

1 1

1

A A

0 C

− −

−

1BC
M I

− −  =   

1 1 1

1

BC
M

0 C

− − −

−

  =    
A A−
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Example 8. Let A  be the adjacency matrix of the Petersen graph. Let M . 

Then M is invertible, and 

10 2

2

A J

0 I
× =   

1 1
1

1

1A A BC
M

0 C

− −
−

−

 −  =    

− 1 1 1 1
2 2 6 3A I J

0 I

 + − −  =    
J

. 

 
 
Below we will prove the converse to this lemma, which is also of great utility. Of course, 
the lemma only extends easily to a very useful theorem. This theorem is a simple 
generalization of the diagonal matrix example above—it is the extension to block 
diagonal. 
 

Theorem. (Block Upper Triangular). Let 

11 12 1

22 2

A A A

0 A A

0 0 0 A

t

t

tt

      =       

1M−

M  be in 

balanced block upper triangular form. If each of the diagonal blocks is 
invertible, then so is M. Moreover, if that is the case, then  is also 
block upper triangular and its diagonal entries are the respective inverses 
of the diagonal entries. 

Proof. Not surprisingly, the proof is by induction on the number of blocks, t. If t , 
there is nothing to prove. The very important case of t  was dealt with in the lemma. 
But actually, the lemma does all the work. Suppose the theorem hold for t , then 

visualize M in the form 

1=
2=

1−

X Y

0 Z
M

 =   
 where , 

11 1 1

2 1

1 1

A

A
X

0 A

t

t

t t

−

−

− −

      =       

12

22

A A

0 A

0 0

1

2

A

A
Y

A

t

t

tt



  

=  and 

. Once we do that the result will follow readily from the lemma by induction.  Z A tt=
 
Again, the converse of this theorem is true and will be proven below. 
 
Example 17 above exemplifies the next corollary. One direction of the corollary is just 
the theorem applied to the case when the diagonal blocks are 1 . The other direction 
follows from the one side suffices theorem below. 

1×

 
Corollary (Upper Triangular and Inverses). An upper triangular matrix A 
is invertible exactly when all of its diagonal entries are nonzero. 
Moreover, if that is the case, 1A−  is also upper triangular and its diagonal 
will consist of the reciprocals of the diagonal entries of A. 

 
In the diagonal case, 
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Corollary (Diagonal Matrices). A diagonal matrix A is invertible if and 
only if all of its diagonal entries are nonzero. Moreover, if that is the case, 

1A−  is just the diagonal matrix of the reciprocals of the diagonal entries of 
A. 

 
 
And we now arrive at the deepest theorem of the section, which is truly surprising in the 
sense that all we need is to multiply on one side to check whether something is the 
inverse of something else. 
 

Theorem (One Side Suffices). Let A  be square. If AX= I , then A  is 
invertible and, as before, 1X A−= . 

 
The challenging proof of this theorem can be found in the Appendix. 
 
 

Corollary (Either Side). Let A  be square. If XA= I , then A  is invertible 
and 1X A−= . 

Proof. Since X is square and XA= I , we can apply the theorem to X, and so we know that 
X is invertible, and 1A X−= .  
 
 
Example 9. The purpose of this example is to show that the square hypothesis is 

necessary to make full sense of the theorem. Let  and let B . Then 1 0 0
0 1 0

A
 =   

1 0
0 1
0 0

   =     

2AB I= , but, of course, . More importantly, there does not exist a matrix 

C such that CA . 

1 0 0
0 1 0
0 0 0

BA
   =     

3I=
 
 
Now we are in a position to prove the converses of the triangularity lemmas and theorem 
before. 
 

Corollary. Let 
A B

0 C
M

 =   
 be block upper triangular where A and C are 

square (not necessarily of the same size). If M is invertible, then so are A 
and C. 

Proof. Assume that M is invertible. We need to show that A and C are invertible. Let 
1 X Y

M
Z W

−  =    
. Then by multiplying MM , we get that  . By 1− AX BZ AY BW

I
CZ CW

 + + = 
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looking at the second row, we get  and . So, by the theorem, we have that 
C is invertible, and so  (by Fact 7 above). But now 

CW I= CZ 0=
Z 0= AX= I , and we are done.   

 
 
We finish the section with a frivolous but entertaining application of inverses. 
 
Example 10. Cryptography: An application of inverses. One can use matrices to 
encode messages by the simple act of multiplying by a given matrix. The idea is very 
simple. Suppose we are given a message: 
 

MENA IS FABULOUS. 
 
then one can use the simple conversion of letter to number to encode it: 
 

1 2 3 4 5 6 7 8 9 10 11 12 13 
A B C D E F G H I J K L M 
14 15 16 17 18 19 20 21 22 23 24 25 26 
N O P Q R S T U V W X Y Z 

and 0 is a blank. 
 
So the message becomes (if one is tight in space or memory, one could ignore blanks 
since those are usually easily deducible from context): 

13 5 14 1 0 9 19 0 6 
1 2 21 12 15 21 19 

 
The problem with this simple encoding is that everyone can figure what the message was.  
 
A little more interesting is that given any matrix (which is of course supposed to be 
hidden from the enemy), one simply multiplies by that matrix to encode.  
For example, suppose we use the matrix  2 5 2 1 

3 1 4 7 
1 2 1 1 
1 1 1 1 

 
 
 
 
Then we would multiply the matrix by the message, which when transformed into 
column vectors becomes: 13 0 6 12 

5 9 1 15 
14 19 2 21 
1 0 21 19 

 
 
and we would obtain the encoded message 
 

80 107 38 33 83 85 37 28 42 174
 31 30 160 268 82 67 
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which already is not readily decipherable without the matrix. But one can go further, and 
do what is called modular arithmetic1 and reduce these numbers mod 27 (26 letters and a 
space), and obtain the modified message 

26 26 11 6 2 4 10 1 15 
12 4 3 25 25 1 13 

which in turn can be changed to letters, and therefore would be even more confusing to 
the enemy: 

Z Z K F B D J A O L 
D C Y Y A M. 

 
To decode the message, one would have to reverse the process—change the received 
letters to numbers, multiply them by the inverse of the original matrix, reduce them mod 
27, and then change the numbers back to letters—only then we would receive our 
original message. Of course, without knowing the matrix it is rather difficult. 
  
Specifically, we would get the received message: 26 2 15 25 

26 4 12 25 
11 10 4 1 
6 1 3 13 

 
 
 
 
and multiply it by the inverse of our original matrix: 
 -3 -1 6 4 

0 0 1 -1 
4 1 -10 -1 
-1 0 3 -1 

 
 
 
 

-14 54 -21 -42 
5 9 1 -12 

14 -89 29 102 
1 27 -6 -35 

 
 to obtain the sent message before running through the mod 27 
reduction: 
 
 

                                                 
1 To do arithmetic mod 27, one simply divides by 27 and obtains the remainder, e.g., 89=3*27+8—Most 
calculators have the mod function built into them, the usual syntax is, e.g., mod(89, 27)=8.  
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 Row Reduction & Linear Equations 

 
So far we have discussed the arithmetic of matrices. In this section we begin to discuss 
the` algebra of matrices. What is the simplest equation in everybody’s past? Probably 
something like 15 . And what was the process of solving it? Simple, both sides of 

the equation get multiplied by 

60x=
1

15
, and we arrive at the simple solution . We intend 

to solve the same level of equation for matrices, but because we have size now to 
consider it we discuss it further.  

4x=

 
In fact the most basic equation of matrices (as with numbers) is the linear equation, and 
so the most basic matrix equation is  

Ax b=  
where A is an  matrix and b is an  vector. Of course x is our unknown. In fact 
we refer to them as follows, A is the matrix of coefficients, x is the unknown and b is 
the constant vector. 

m n× 1m×

 
The acute reader may suggest we are short-charging ourselves by not looking at the more 
general true matrix equation 

AX B=  
where A is an  matrix and B is an  matrix, and thus our unknown would be an 

 matrix. But the even more acute reader would realize that by solving 
m n× m p×

n p× Ax= b  for 
each of the columns of B we would (by simple matrix multiplication) be solving the more 
general equation AX B=  since we would be finding the columns of X one at a time. 
 

For example, in order to solve 
  , we would equivalently have to solve 

the two simpler equations 

1 2 3 1 2
4 5 6 3 4

X
 =  

1 2 3 1
4 5 6 3

x
  =    

 
 and 

 
1 2 3 2
4 5 6 4

x =   
, and if u 1

3

1
1
0

       
=  and 

v 1
3

1
2

3
−
       

= , for example, are respective solutions to these two equations, then the 3 2  

matrix ( )

×

u v 1
3

1 1
1 2
0 3

−
   =     

 will be a solution to the original system. 

   

     

 
And of course if one wanted to solve an equation of the form XA B= , transposing would 
lead us to a previous form—finally, if we wanted to solve the more general linear 
equation on one unknown AX C B+ = , that immediately reduces to AX B C= − . Thus 
we come to the conclusion that by being able to solve the ancient  

Ax b= , 
one is able to solve any linear matrix equation in one unknown.  
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But even more is true. Suppose A  is  and B  is  and  is m . We could 
consider the linear equation on two unknowns,  

m n× m p× C q×

AX BY C+ =  
where X  is an  unknown and n q× Y  is p q×  unknown. But the equation AX BY C+ =  
is equivalent to the equation DZ  where D  is the horizontal stacking of A and B, 

, and thus Z becomes an (  unknown, the vertical stacking of our 

two previous unknowns, 

C=
( )D A B= )×n p+ q

X

Y
Z=

    
. And in turn DZ  can be reduced to an equation of 

the form 

C=

Ax= b . Thus the ability to solve the equation Ax= b  entitles us to solve any 
linear equation involving matrices. 
 
Thus we concentrate on the equation Ax b= . 
 
 
The most important first observation follows from the analysis of the equation for 
numbers. Namely the equation following 15  carries the same information as 

, or , or 150 . Of course, of all of these, we chose  
as to represent the solution since it is the one where the information is most transparent, 
clearest. But in fact all of these equations are the same equation. Of course, the one 
number we could not have multiplied by is 0 since then we would obtain 0 , which 
carries no information—multiplying by 0 has destroyed all the information. 

60x=
15 60x− =− 30 120x= 600x= 4x=

0x=

 
 
From the abstract point of view, the first claim is trivial, but everlasting, since all is built 
into it. 
 

Theorem (Equations and Inverses). Let P be an invertible matrix. Then 
the equation Ax b=  and the equation PA  have exactly the same 
solutions. 

x Pb=

Proof. Clearly, if Ax= b , then , and conversely, if PA , then  PAx Pb= x Pb=
( ) ( ) ( ) ( )-1 -1 -1 -1Ax P P Ax P PAx P Pb P P b= = = = b=  

and so we are done.  
 
Example 1. The simplest equation to solve is simply , which of course, has the 
unique solution 

Ix b=
x b= . 

 
By the same reasoning, if P is invertible, then Px  has a unique solution, b= 1x P b−= . 

Concretely suppose we wanted to solve Px , , then since b=
3

3

4

1 4 7
2 5 8
3 6 10

x
y
z

          −             

    =    



-1
2 2 3 2 2 3

1 1
4 11 6 4 11 6

3 33 6 3 3 6 3
P

− − −
−

− −
− − −

       = =          
−




, we have that  is the unique solution. 

4
23

13
−
   =     

x
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Note that what has actually occurred in this last example is the changing of the matrix of 
coefficients from A to I. In fact, that is what we will systematically pursue below as much 
as it can be done—in the invertible case, this is of course accomplished via the inverse. 
But also observe we do not have yet a general technique for finding the inverse of an 
invertible matrix.  
 
Above, we referred to the equation Ax b=  as ancient, and indeed it is at least 2,000 years 
old in China, and the process of solving linear equations goes back in China to at least 
The Nine Chapters of the Arithmetic Art which dates from the first century AD.  
 
The method was called of rectangular arrays. One of their problems was the 
following—we should remark a dou is a unit of volume. 
 
Example 2. Three bundles of top-grade ears of rice, together with two bundles of medium 
grade, and one bundle of low-grade ears of rice make 39 dou of rice. Also two bundles of 
top-grade ears of rice with three bundles of medium grade and one bundle of low-grade 
ears of rice make 34 dou of rice. Finally, one bundle of top-grade ears of rice, and two 
bundles of medium grade with three bundles of grade ears of rice make 26 dou of rice. 
How many dou are there in a bundle of top-grade, of medium grade, and of low-grade ears 
of rice? 
 
Except that the Chinese would write the system vertically and from right to left, there is 
very little difference between the ancient method and our modern day method. However 
they do differ in age, there is more than fifteen centuries between them. Today, we would 
write this problem as a system of three equations on three unknowns: 

3 2 3
2 3 3

2 3 2

x y z
x y z
x y z

+ + =
+ + =
+ + =

9
4
6

 

or, in matrix form, 
3 2 1 39
2 3 1 34
1 2 3 26

x
y
z

           =                





    , Ax b= , where A=
3 2 1
2 3 1
1 2 3

       
, x

x
y
z

   =     
 and 

.  
39
34
26

b
   =     

 
 
In a similar fashion to the Chinese, we would now solve it using the three steps of the 
procedure known as Gaussian Elimination: 

 Permuting rows; 
 

 Multiplying a row by a nonzero number,  
 
and most importantly 
  Adding a multiple of a row to another row. 
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Why are we allowed to use these three steps? Because each of them is nothing but 
multiplication on the left by an appropriate invertible matrix, and by the theorem above, 
we can do so without changing the solutions to the system.  
 
But note that the multiplication of Ax= b

)
 by P leads to PA , and the information 

can easily be stored in the horizontal stacking of A and b, 
x Pb=
(A b , since when we 

multiply this matrix by P we get ( , which is the desired information for the 
transformed equation. This horizontal stacking is called the augmented matrix of the 

system, and in our particular case it is given by: 

)PA Pb

3 2 1
2 3 1
1 2 3 2




39
34

6

  

 .  

 
Row reduction, or simply reduction, is often used as a synonym for Gaussian 

Elimination. So we now proceed to reduce the matrix 
3 2 1 39
2 3 1 34
1 2 3 26

    

 : 

What we 
multiply by 

Language Description of the Product End Result 

0 0 1
0 1 0
1 0 0

       
 Permuting the first and third rows 

1 2 3 26
2 3 1 34
3 2 1 39

       
 

1 0 0
2 1 0

0 0 1
−
       

 Subtracting twice the first row from the 
second row 

1 2 3 26
0 1 5 18
3 2 1 39

− − −
       

1 0 0
0 1 0
3 0 1−

       
 Subtracting thrice the first row from the 

third row 

1 2 3 26
0 1 5 18
0 4 8 39

− − −
− − −

       
1 0 0
0 1 0
0 0 1

−
       

 Multiplying the second row by −1 
1 2 3 26
0 1 5 18
0 4 8 39− − −

       
1 0 0
0 1 0
0 4 1

       
 Adding four times the second row to the 

third row 

1 2 3 26
0 1 5 18
0 0 12 33

       
 

1 2 0
0 1 0
0 0 1

−       
 Subtracting twice the second row from the 

first: 

1 0 7 10
0 1 5 18
0 0 12 33

− −       
 

1
12

1 0 0
0 1 0
0 0

       
 Dividing the third row by 12: 

11
4

1 0 7 10
0 1 5 18

0 0 1

− −         
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1 0 7
0 1 0
0 0 1

       
 Adding seven times the third row to the first:

37
4

11
4

1 0 0
0 1 5 18
0 0 1

       
 

1 0 0
0 1 5
0 0 1

−
       

 Subtracting five times the third row from the 
second: 

37
4

17
4

11
4

1 0 0

0 1 0

0 0 1

          

 

Providing us with the unique solution: 
37

1
17

4 11

x
y
z

      =         
  since now the coefficients are nothing 

but the identity matrix. 

 

 
Again we emphasize that this process of reduction is that of multiplication (on the left) by 
the appropriate matrices, and each of the three steps of Gaussian Elimination corresponds 
to multiplication (on the left) by a special type matrix.  
 
The end result is that Gaussian Elimination is equivalent to multiplication on the left 
by an invertible matrix. In our example above:  

37
4

17
4

11
4

1 0 0

0 1 0

0 0 1

     =     

7 4
1

5 8 1
12 1 4 5

− −
− −

−

       

1 3 2 1 39
2 3 1 34
1 2 3 26

       
 

and the matrix 
7 4

1
5 8 1

12 1 4 5

− −
−

−

       

1
−  is the sequential product of the row operations described 

above: 
7 4 1

1
5 8 1

12 1 4 5

− −
− −

−

   =    

1 0 0
0 1 5
0 0 1

−
       

1 0 7
0 1 0
0 0 1

        1
12

1 0 0
0 1 0

0 0

         

1 2 0
0 1 0
0 0 1

−       
 

1 0 0
0 1 0
0 4 1

       

1 0 0
0 1 0
0 0 1

−
       

1 0 0
0 1 0
3 0 1−

       

1 0 0
2 1 0

0 0 1
−
       

0 0 1
0 1 0
1 0 0

       
 

 
 
One of the key ingredients in the process of reducing the matrix was that of transforming 
a nonzero column to a column of the identity. The most common way to accomplish this 
is to select a nonzero entry in that column, making it a 1 by dividing that row by the 
entry, and then zeroing all other entries in that column by adding multiples of that row to 
all other rows. This is called pivoting in that position. 
 
 



 47

Example 3. Consider the matrix . If we pivot in the 3-2 position, we will 

obtain the matrix 

1 4 7
2 5 8
3 6 9

A
   =     

1
2

31
2 2

1 0 1
0
1

−
−
    
 . The sequence of steps is as follows  1

2


Factor Result Factor Result Factor Result 

1
6

1 0 0
0 1 0
0 0

        
 

31
2 2

1 4 7
2 5 8

1

       
 

1 0 4
0 1 0
0 0 1

−       
 

31
2 2

1 0 1
2 5 8

1

−       
 

1 0 0
0 1 5
0 0 1

−
       

 1 1
2 2

31
2 2

1 0 1
0
1

−   −    
 

 
so the invertible matrix that will accomplish the pivoting is:  

1 0 0
0 1 5
0 0 1

−
       

1 0 4
0 1 0
0 0 1

−        1
6

1 0 0
0 1 0
0 0

        

4
6
5
6

1
6

1 0
0 1
0 0

 −   = −     
. 

 
A general observation is that when pivoting on a position the matrix that 
accomplishes that reduction is the identity except for one column. 
 
 
 
 

Example 4. Not all systems have solutions. Let  and . Then obviously, 

since 

1
1
1

A
   =     

1
2
3

b
   =     

1
2
3

    

  is not a multiple of 
1
1
1

    

  the equation Ax b=  has no solution. 

 
A little more interesting is the following.  
 

Before we saw that M  is an invertible matrix. Consider the system 
1 4 7
2 5 8
3 6 10

   =     
Ax b=  

where , the first two columns of M and , the third column of M. If there 

were a solution to 

1 4
2 5
3 6

A
   =     

7
8

10
b

   =     

Ax b= x=, say , then we would have that a
b
    

7
8

10

    

 , but 
1 4

5
3 6

b
            

2a
 
 = +  

 
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that would imply that M , which we have seen is impossible for invertible matrix. 

Thus, we can claim that 
1

a
b
−

   =    
0

Ax b=

1 2 0
0 1 0
0 0 0
0 0 0

−


















 has no solutions. 
 
 
In the example above we arrived at a unique solution, which, as we will see, can only 
happen if we had at least as many equations as unknowns. In some of our problems, this 
will not be the case, and thus we want to review what happens with a system in general. 
 
A matrix A is said to be in (row) reduced form (or row echelon form, or row reduced 
echelon form) if the following 4 conditions are satisfied: 
 

 The first nonzero term of any row is a 1. This entry is called a pivot, and 
thus every row is either all zeros or it has a unique pivot. Hence a nonzero 
row will be called pivotal, and such a row will have exactly one pivot. 
Conversely, every pivot is in a pivotal row. 

 
 A column that contains a pivot, a pivotal column, has all zeroes except for 

the pivot. Hence any pivotal column is identical to a column of the identity 
matrix, and a pivotal column has exactly one pivot, and every pivot is in a 
pivotal column. 

 
 Any zero row is below any pivotal row. 

 
 The pivots in the matrix lie from upper left to lower right. 

Note that the number of pivots equals both the number of nonzero rows of the reduced 
matrix as well as the number of pivotal columns. 
 
 

Example 5. Any matrix of the form 
1 * 0 * 0
0 0 1 * 0
0 0 0 0 1
0 0 0 0 0

         

  where * are arbitrary is reduced. Here 

the first three rows are pivotal while the pivotal columns are 1, 3 and 5. On the other 
hand, none of the following is in row echelon form:  

,  ,   and . 
1 2 0
0 1 0
0 0 0
0 0 0

















1 0 0
0 1 0
0 0 0
0 0 1

















1 0 0
0 0 1
0 1 0
0 0 0



















 
Note that requirements  and  of the reduced form are easily accomplished by simple 
row permutations, while  may require multiplication by a diagonal matrix. It is 
requirement  that demands the most effort, most of it being the addition of a multiple of 
a row to another row. 
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Example 6. Consider the matrix A=
1 * 0 * 0
0 0 1 * 0
0 0 0 0 1
0 0 0 0 0

             

, which is reduced. For which b’s 

does the system Ax b=  have a solution? Let b . If we were to write the system of 

equations we would get (if we let our respective unknowns be x, y, z, w and u) 

=

a
b
c
d

           

x y w+∗ +∗ = a
b

 
z w+∗ =  
u c=  

0 0 0 0 0x y z w u+ + + + = d  
and we have a clear necessary and sufficient conditions for a solution to exist: d has to be 
0, or equivalently Ax b=  will have a solution if and only if the fourth coordinate of b is 
0. The necessity is obvious from the last equation, but the sufficiency is also clear since 
all we need to do is let  and 0y w= = x a= ,  and . z= b u c=
 
The example shows that for a reduced matrix the only time that we do not have a solution 
is when we have a row of zeroes in the matrix of coefficients but a nonzero entry in the 
constant vector. This example is generic as the following lemma shows, which will be 
needed for the major theorem below. 
 

Lemma (Existence of Solutions). Let A  be row reduced. Take any vector 
b. Then Ax b=  has a solution if and only if b has a zero in every zero row 
of A. 

Proof. Since A is reduced, we know A is of the form  where actually the 0 block 

may be nonexistent since every row of A may be nonzero (if 

M

0
A

 =   
A 0= , then b has to be 0 

too, a very uninteresting case). Block b in the same fashion as A, so b . Then the 

claim becomes that 

c

d

 =   
Ax b=  has a solution if and only if d . One direction is clear, if 

, then we are attempting to solve an equation where all the coefficients are 0, but 
the constant term is not 0, and that is clearly impossible. Assume then conversely, that 

. But then for every position of c, we have a pivot in that row of A, so choose the 
vector x that has the same entry as c in a given row, but we put that entry in the row that 
corresponds to the pivotal column where the pivot from that row of A is. Then the vector 
x is a solution to the equation 

0=
d 0≠

d 0=

Ax b= .  
 
 
This abstract description is much harder than what actually occurs. One example should 
suffice.  
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Example 7. Let , and let . Then  is a solution to the 

equation. 

1 2 0 3 0
0 0 1 2 0
0 0 0 0 1
0 0 0 0 0

A

     =        0

b

a
b
c

     =       

0

0
x

a

b

c

      =        

 
Ultimately, the theorem is the Uniqueness of the Row Echelon Form: 
 

Theorem (Uniqueness of the form). Let A be an arbitrary m n×  matrix. 
Then A is row equivalent to a unique matrix in row echelon form. 

 
The proof can be found in the Appendix of Proofs. This is indeed a fundamental fact 
with many important consequences. In fact, the proof is actually algorithmic in the sense 
that we arrive at the reduced form by reducing one column at a time.  
 
There are several algorithm for arriving at the reduced from of a matrix. But because of 
the uniqueness it is irrelevant what algorithm we adopt. One of them is as follows: 

 Make the first column if nonzero into the first column of the identity by 
pivoting. 

 Go to the next row that is not 0, and find the first column that has a 
nonzero entry in that row and pivot in that position. 

 Keep repeating  until there are no nonzero rows without a pivot. 
 If necessary permute rows so properties  and  of the reduced form are 

taken care of. 

Example 8. Let us considering reducing  . Since we have a 1 in the 

position, we can start by pivoting there to obtain . Now we will pivot 

in the position, and get  . Now we skip row 3 since it is all zeroes, 

1 2 3 5 6
1 2 3 5 7
1 2 3 5 7
1 2 3 6 7
1 2 4 6 8

          
1 2
0 0
0 0
0 0 0
0




0
1
0

0



1,1−

3 5 6
0 0 1
0 0 1

1 1
0 1 1 2

  

2,5−

1 2 3 5
0 0 0 0
0 0 0 0
0 0 0 1 0
0 0 1 1

 
 
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and choose to pivot in the position: , and finally pivot in the 

entry, and get  , and permuting rows:  . 

4, 4−

2 0 0 0
0 1
0 0
1 0

1 0 0

  

1 2 3 0 0
0 0 0 0 1
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0

             
1
0 0

0




5,3−

1
0 0 0
0 0 0
0 0 0
0 0




2 0 0 0
1 0 0

0 0 0 1 0
0 0 0 0 1

0 0 0 0

  

1 1 0
2 6 4
2 5 3
2 4 2



1
2
1
0

−  

Ax

=

3
13
12
10

           

)A b

PA Pb )PA

(A
)b c I

)
1 1 3 1

34 13 0 1
25 12 0 0
16 10 0 0 0

− −

3 1 0 0 0
7 2 1 0 0
6 2 0 1 0
4 2 0 0 1

−
−
−

  
1.25 1.5 0.25
1.75 0.5 0.2
0.75 0.5 0.
0.5 1 0.5

−
−
− −
− −

PA

1


1 0
0 1
0 0
0 0





Pb

1
2

2




1 0

0 4 4
0 3 3
0 2 2

1
1
0
0

− −

0 0 0
0 0
1 0

1

  

0 0
5 0 0
75 1 0

0 1

  

2,2−

 

Example 9. Let A = . Suppose we consider the systems b=  and Ax c=  

where  and c . Since we are about to reduce (b=

1
34
25
16

−           

 and ( )A c  and the 

end result will be ( )  and ( , where the matrix P is the same matrix that 
reduces A, we can accomplish all the work by reducing both system at once in the form 

Pc

)b c . But even better, if we wanted to actually compute the matrix P as we do the 

reduction, then we should reduce the matrix (A , for then when we are finished 

we will have the matrix ( , and we will know the reducing matrix. And 

that is what we do. We start with 
, which after pivoting 

in the 1 position we get 
, and then if we pivot in the 

position, we have  . And although the 

matrix we see is not reduced we stop, because A is reduced. Moreover, we can see that 

Pc P

1 0
6 4

2 5 3
4 2

1
4 36
3 27
2 18

− −

2 10
1 9
0 0
0 0

−

2
1
0

1

,1−
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the system Ax b=  has a solution,  . Also 

10
9
0
0

−       

Ax c=  does not since there is a nonzero 

entry in the third row of c, and that row is all zeroes in A. Moreover, we know that the 

matrix 

6 1 0
2 1 0 0
2 3 4 0
4 2 0 4

− =  

0
1

4

−
− −
− −



P  will reduce the matrix A. In the next section we will see how 

to find all solutions to Ax b=

−
−
−
−





. 

2 2
7 7
9 9
3 3

10
26 1
36 1
12

 
We finish this section with another example of a reduction of a matrix. 
Example 10. Reducing by Hand. When reducing a matrix without a sophisticated 
machine, one needs to keep track of the step being performed as one moves across the 
row. Thus it is recommended to develop some notation that will remind one of the 
operation being performed. One possible set of symbols is now exemplified in the 

reduction of the matrix  . 

2 2 4
4 1 12
6 3 16
2 4 5

  

1−

2 2 2 10 2 4
7 7 4 26 11 12
9 9 6 36 13 16
3 3 2 12 4 5

−
−
−
−

           

2 2 2 10 2 4
7 7 4 26 11 12
9 9 6 36 13 16
1 1 0 2 2 1

−
−
−
−

           

7−
1 1 0 2 2 1
7 7 4 26 11 12
9 9 6 36 13 16
2 2 2 10 2 4

−
−
−
−

           

9−
1 1 0 2 2 1
0 0 4 12 3 5
9 9 6 36 13 16
2 2 2 10 2 4

−
−

−
−

           

1 1 0 2 2 1
0 0 4 12 3 5
0 0 6 18 5 7
2 2 2 10 2 4

−
−
−

−

           

2−
1
2

1 1 0 2 2 1
0 0 4 12 3 5
0 0 6 18 5 7
0 0 2 6 2 2

−
−
−
−

           

4−

1 1 0 2 2 1
0 0 4 12 3 5
0 0 6 18 5 7
0 0 1 3 1 1

−
−
−
−

           
6−

1 1 0 2 2 1
0 0 0 0 1 1
0 0 6 18 5 7
0 0 1 3 1 1

−

−
−

           

1 1 0 2 2 1
0 0 0 0 1 1
0 0 0 0 1 1
0 0 1 3 1 1

−

−

           

1−

1 1 0 2 2 1
0 0 0 0 0 0
0 0 0 0 1 1
0 0 1 3 1 1

−

−

           

1 1 0 2 2 1
0 0 1 3 1 1
0 0 0 0 1 1
0 0 0 0 0 0

−
−

           

1

1 1 0 2 2 1
0 0 1 3 0 2
0 0 0 0 1 1
0 0 0 0 0 0

−           

2−

and we arrive at the reduced form of the matrix  . 

1 1 0 2 0 1
0 0 1 3 0 2
0 0 0 0 1 1
0 0 0 0 0 0

− −       
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 Rank & Systems 
 
The number of pivots in the row reduced echelon form of A, or equivalently, the number 
of nonzero rows of the reduced matrix, is a very important invariant of A and is called the 
rank of A, which we will abbreviate by ( )Ar .  
 
Clearly, by definition if A is , then r m  and  since any row can only 
have at most one pivot, and the same applies to any column. A matrix is said to be of full 
rank if its rank is as large as possible. Sometimes when clarification is needed one can 
describe a matrix as being of full row rank, or of full column rank as the occasion calls 
for. Thus a  is of full rank if its rank is 5 (as large as possible). Naturally, the reason 
why row equivalence play a role in the study of linear equations is the elementary fact 
that the solutions of 

m n× ( )A ≤ ( )Ar ≤ n

5 6×

Ax b=  are exactly the same as the solutions to PA  if P is any 
invertible matrix as proven above. 

x Pb=

 
 
The following is basically a corollary to the uniqueness of the reduced form. 
 

Theorem (Invertible Matrices). Let A be a square matrix. Then the 
following are equivalent: 

 A is invertible; 
 A has full rank; 
 A reduces to I. 

Proof. Assume A is invertible. Then we argue when A is reduced there cannot be any zero 
rows. For suppose there were, if we let P denote the reducing matrix, then PA  would also 
be invertible and would have a row of zeroes. But that is impossible since a row zeroes 
will always produce a row of zeroes in any product, so one could never multiply to I. But 
without a row of zeroes, every row is pivotal, so the rank is full. If  holds, then we must 
have a pivot in every row, and since the matrix is square, we must have a pivot in every 
column, and so the reduced form is I. Finally if  holds, then PA  for the reducing 
matrix P, so A is invertible.  

I=

 
This allows us to just define two matrices A and B to be row equivalent if there exists an 
invertible matrix P such that PA B= , since every invertible matrix can be obtained by a 
sequence of row operations by the corollary. Of course, we could have also said that two 
matrices are row equivalent if and only if they have the same reduced form. 
 
 
The previous theorem also permits us to produce an algorithm based on reduction for 
computing the inverse of any invertible matrix. 
 

Corollary (Gauss-Jordan). Let A be an invertible matrix. Then when we 
reduce the matrix ( )A I  we will obtain ( )1I A− . 
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Proof. We know from above that A will reduce to the identity, and so when we multiply, 
we get the result.  
 

Example 1. Take the matrix A=

1 2 3 5 0
2 2 1 2 1
3 1 10 14 2
4 2 1 1 0
5 3 1 1 0

−

             

. The sequence of pivotings is: 

2 3 5 0 1 0 0 0 0
2 2 1 2 1 0 1 0 0 0
3 1 10 14 2 0 0 1 0 0
4 2 1 1 0 0 0 0 1 0
5 3 1 1 0 0 0 0 0 1

1                    

−    

1 2 3 5 0 1 0 0 0 0
0 5 8 1 2 1 0 0 0
0 5 1 1 2 3 0 1 0 0
0 6 11 19 0 4 0 0 1 0
0 7 14 24 0 5 0 0 0 1

2− − − −
− − − −
− − − −
− − − −

             
 

5 1 1
22 2

9 5
22

7 7 7
2 2 2

1 0 2 3 1 1 1 0 0 0

0 1 4 1 0 0 0

0 0 19 2 1 0 0

0 0 4 5 3 2 3 0 1 0

0 0 4 2 0 0 1

27
2

− − −

− −

− −

− −

− −

                 

 

5 19 171 4
27 3 27 27 27
13 17 51 1
27 3 27 27 27
38 51 4 2
27 3 27 27 27

5 38 61 8
3 27 27 27

25 7 40 77 7
27 3 27 27 27

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

-17
27

− −

−−

−−

− − −

− − − −

                

 

 
19 514 22 4

17 17 17 17 17
16 29 30 7 13

17 17 17 17 17
69 56 89 10 38

17 17 17 17 17
45 38 61 8 27
17 17 17 17 17

10 8 3 25
17 17 17 17

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 12

17

− −

− − −

− − −

− −

− −

              

 97 6911
2 2 2
7 63 45

2 2 2
3 25 17
2 2 2

1 0 0 0 0 3 2 1 10 7
0 1 0 0 0 3 2 1 11 8
0 0 1 0 0 17 11
0 0 0 1 0 11 7
0 0 0 0 1 5 4

−

− −

−

− − −
−

−
−

              

 

 
So 

1A− = 97 6911
2 2 2
7 63 45

2 2 2
3 25 17
2 2 2

3 2 1 10 7
3 2 1 11 8

17 11
11 7

5 4

−

− −

−

− − −
−

−
−

              

 

 
 
 
Since the reduced form of the matrix ( )A B  starts with the reduced form of A, it is clear 

that every position occupied by a pivot in A will be occupied by a pivot of ( )A B , and 
thus trivially we have that  

( ) ( )A B Ar r≥  
for any matrices A and B (that can be horizontally stacked). 
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And we have an easy, but important consequence of the concept of rank: 
 

Theorem (Rank & Equations). Let , ,…,  and b be vectors of size 
m. Let 

1u

)
2u un

( 1 2A u u un=  be the  matrix whose columns are the 
u’s. Then the following are equivalent: 

m n×

 The system Ax b=  has a solution. 
 The vector b is a linear combination of , ,…, . 1u 2u un

  ( ) ( )A A br r= . 
Proof. The equivalence of  and  was observed long ago in the section on matrix 

multiplication, but it is worth repeating. If  holds, and , then 

, and vice versa, from the linear combination, we obtain a 
solution. So ⇔ . Now since 

1

2x

n

a
a

a

      =        
1 1 2 2b u u un na a a= + + +

( ) ( )A A br r≤ , the only way they may not be equal is 

for a pivot to appear in the last column of ( )A b , but again the only way that can happen 
if to have a row of zeroes on the matrix of coefficients side, but a 1 in the last column, 
which is equivalent to Ax= b  not having a solution.  
 

Example 2. Consider the system Ax b=  where A =

1 1 0 1
2 6 4 2
2 5 3 1
2 4 2 0

−           

 and b . When 

we reduce (

=

1
34
25
16

−           

)A b  we get 
 , and we see that , and 

of course we have the solution  , and in fact − . 

1 0 10
0 1 9
0 0 0
0 0 0

         

9
0
0

−



1 2
1 1
0 0
0 0

− −

10  

( )

1 1
2 6
2 5
2 4

9

−             + =                

(A A



)b= = 2r r

1
34
25
16

 

10

 
Corollary (Full Row Rank & Equations). Let A be an m  matrix. Then 
the following are equivalent: 

n×

 A has full row rank, . ( )Ar m=
 The system Ax= b  has at least one solution for any vector b of 

size m. 
 Any vector b of size m can be written as a linear combination of 

the columns of A. 
 There exists a  matrix X such that n m× AX Im= . 
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Proof. By the previous theorem, since  for any b, we have that  implies 
. Conversely, suppose that  does not hold. So the reduced form of A, PA  has a row of 

zeroes. But then readily we can find a vector c that has a 1 in that row, so PA  does 
not have a solution, and consequently neither does 

( )A br ≤m

x c=
1Ax P c−= , and  is then false. So 

. The equivalence of  and  is clear by matrix multiplication. Assume . Then 

we can solve any system, so one can solve , the first column of the identity I . 

Let 

⇔
1
0

0

Ax

     =       

m

1v  be a solution. Similarly, one can solve Ax , the second column of the 

identity. Let 

0
1

0

     =       

2v  be a solution. Proceeding that way, we get vectors 1v , 2v ,…, vm , and if 
we let ( )1 2X v v vm= , then AX Im= . Conversely, suppose X exists so that 
AX= I , but then to solve Ax= b , we know that b I , so b AXb= = x Xb=  is a solution.  
 
Note that in the square case, this is nothing but the Gauss-Jordan algorithm. 
 

Example 3. Consider . Its reduced form is 


, so A is of rank 2. 

And 

1 2 3
4 5 6

A
 =  







1 0 1
0 1 2

− 

1
3

5 2
4
0 0

X
−

−
   =     

1 . Thus to solve Ax b=  with , we simply take . 7
1

b
 =   

11
9
0

Xb
−   =     

 
Before we pursue the full column rank statement, we need a key observation about a 
reduced matrix, and the process of Gaussian Elimination.  
 

Lemma (Nonpivotal Columns). Let , ,…,  be vectors of size m 
and let 

1u 2u un
( 1 2 )A u u un=  be the  matrix whose columns are the 

u’s. Then every nonpivotal column of A can be written uniquely as a linear 
combination of the pivotal columns. 

m×n

Proof. Let M be the reduced form of A, M v . Then it is obvious that the 
theorem holds for any reduced matrix since the pivotal are columns of the identity matrix. 
We just need an extra observation. Any way one can write a u as a linear combination of 
the other u’s is tantamount to writing the corresponding v as the same linear combination 
of the other v’s. For example, suppose u u . This means 

( 1 2v v n=

1 1 2 2ua a= +

)

n1 1un na − −+ +
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1

2

1

1

A 0

n

a
a

a −

−

        =        

, but Ax 0=

1 =

1
2
2
2

           

 and Mx  have the same solutions (since  for some 

invertible matrix P). And the reverse argument is also clear.  

0=

=

1
6
5
4

           

3

M PA=

1 1 0
2 6 4
2 5 3
2 4 2



3 = −

n×

M=

u2

1 0 1
0 1 1
0 0 0
0 0 0

− −

u u4 2= − +

x b=

n m×

A b

Ax b=

 
 

Example 4. Let u , u , u2 =

0
4
3
2

           

, and u4 =

1
2
1
0

−           

, and A =

1
2
1
0

−  

1 +

. The 

reduced form of A is . It is clear that any nonpivotal column in M can 

be written as a linear combination of the pivotal columns preceding it. And the 
relationship between the columns is preserved in the reduced form: u u  and 

. But note that the reduction has a definite prejudice on which columns 
will be chosen as pivotal, since it always prefers the leading ones if at all possible. 

2
1
0
0

  



1

u2

 
 

Corollary (Full Column Rank & Equations). Let A be an  matrix. 
Then the following are equivalent: 

m

 A has full column rank, . ( )Ar n=
 The system A  has at most one solution for any vector b of 

size m. 
 Any vector b of size m can be written in at most one way as a 

linear combination of the columns of A. 
 There exists a  matrix X such that XA Im= . 

Proof. Start by assuming . Since A is of full column rank, the reduced form of the 

augmented matrix (  has to be of the form 
I c

0 d

    (where the 0-block and the d 

may be nonexistent). If d has an entry that is not zero, then we know that the system has 
no solution, but otherwise we know the unique solution is x c= , and we have . That  
and  are equivalent follows easily by matrix multiplication since every solution to 

 is a is a way of writing b as linear combination of the columns of A. Assume now 
that  is not true. But then by the lemma, we can write a nonpivotal column as a linear 
combination of the pivotal ones, but that same nonpivotal column can simply be written 
as a linear combination of itself alone (with all other coefficients equal to 0), and so there 
is more than one way to write a vector as a linear combination of the columns of A. Thus 

 is not true. Now assume  holds and let u be a solution to Ax b= , so Au= b . Then 

)
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multiplying by X, we get u , so u is uniquely determined. Thus all we have left to 
do is to prove X exists if we assume . We know the reduced form of A is of the form 

any of the first three statements. Let P be the reducing matrix, so P is  where 

necessarily . Let P  where Q consists of its first n rows. Then , and 

we have .   

Xb=

Q

R

 =    

1 2 3
4 5 6
7 8 9

11 12
14 18

  

I

0

     

P=

m m×

QA=m n≥ In

10
13

2 0 0
2 7 0

4 0 0
3 6 3
6 9 0

− −

−
−
−

1
2

1
0
0

  

X=

Ax

b=

b=

b

b

1 2( )u u un

 
 

Example 5. Let . Then A is indeed of rank 3 with reducing matrix A

= 

1
3

2

3



0

0
3

− −
. So 

2 2 0 0 1
1

2 7 0 0 2
3

3 4 0 0 1

 − −      − −     −   

, satisfies 3XA I= . Thus to solve 

b

14
32
?
?

95

  

=



 where , all we would need to do is compute . However, that 

would only be correct if we knew we had a solution to start with—if instead we had taken 

, our answer would not change, but on the other hand Au would not be correct. 

We will pursue this in another section in a latter chapter. 

14
32
50
68
95

             

1
2
3

b
   =     

u X=

 
 
The last corollary addresses only half of the issue—what happens to Ax=  when A does 
not have full column rank? Of course, we may not have a solution since if A does not 
have full row rank, that will indubitably be the case for some b’s. But suppose then that A 
does not have full column rank and at the same time that Ax b=  has a solution. Then we 
know by the previous lemma that each nonpivotal column can be written as a linear 
combination of the pivotal ones.  
 
Since Ax=  has a solution we know that b is a linear combination of the columns of A, 
say A=  and . Without loss of generality, 1 1 2 2b u u un nk k k= + + +
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let us say that u  is not pivotal. Then we claim that we can find a solution to n Ax b=  
where the value of the nth unknown is arbitrary—in other words, we can write b as a 
linear combination of the columns of A where the coefficient of  is arbitrarily chosen. 
This is just a simple substitution, since , we have that  

un

1a −

un =

1nta − −

)n nt

1 1 2 2 1u u u un na a −= + + +

1 1u u 0n n na − −+ − =

2 2 1 1u u un nta ta t− −+ + + −

1 1 2 2 1u u u un n nta ta+ + + +

( ) (2 2 2uk ta k+ + + + −

m n×

=

( )A b

A

A

Ax= 0

A m n×

( )Ar
x 0=

w
u+ Ax b=

Au Aw b 0 b+ = + =
Ax b= w u− v=

( ) Au Av b b 0= − = − =

n

0

u

t

1 1 2 2u ua a+ + , 
and so we can chose any t, and ta , so  1 1

1 1 2 2b u u unk k k t+ + + − , 
and  

( )1 1 1b uk ta= + , 
 and since t is arbitrary, so is k . This shows that the moment there is a nonpivotal 
column and a solution exists, then the system has infinitely many solutions, and we have 
finished proving: 

n−

 
Corollary (Choices). Let A be , and consider any system Ax b= . 
Then exactly one of the following can happen: 

 It has no solution, which happens if and only ;  ( ) 1Ar r= +
 It has exactly one solution, which happens if and only 

( ) ( )br r= A n= ; 
 It has infinitely many solutions, which happens if and only if 

( ) ( )br r= A n< . 
 
 
We will pursue a more geometric understanding of the nature of all the solutions to a 
linear system in the next chapter. Presently we develop an algorithmic way to describe all 
solutions. Two of the proofs above used a special system, . This is known as the 
homogeneous system (for the matrix of coefficients A).  
 

Corollary (Homogeneous Systems). Let  be  where . Then 
the system 

n m>
Ax 0=  has a nontrivial solution. 

Proof. Since , we have a free variable, and so we have infinitely many 
solutions to 

m≤ < n
A .  

 
 
A more abstract way to describe what occurred in the last argument is as follows: let u be 
a solution to the system Ax b= , and let  be a solution to the homogeneous system 
Ax 0= . Then  is also a solution to w  since  

( )A u w+ = , 
 and conversely, if u and v are solutions to , then  is a solution to the 
homogeneous system since 

Aw A u v= − . 
Thus, we have the following  



 60 

Theorem (Linear Systems). Consider the system Ax b= . Suppose u is a 
particular solution to Ax b= . Then all solutions are of the form u w  
where 

+
w  is a solution to the homogeneous system Ax 0= . 

 
 
Thus we have to start by understanding the homogeneous systems—but from our 
discussion above we saw that the nonpivotal variables can take any value, and that is the 
essence of all solutions to the homogeneous case. 
 

Example 6. Let . Then consider 

1 3 2 4 1
2 6 1 5 4
3 9 3 9 3
4 12 4 12 4

A
−
−
−

     =       

Ax 0=

=

. The reduced form of the 

augmented matrix is 
 . Note that the last column of the augmented 

matrix of a homogeneous system will never change since P0  for any matrix. So all 
our information has come down to two equations: 

1 3 0 2 3
0 0 1 1 2
0 0 0 0 0
0 0 0 0 0





− 0
0
0
0

  
0

1 2 4 53 2 3x x x x+ + − = 0

5

 and . 3 4 52 0x x x+ + =
 
What are the solutions to these equations? Simply solve for each pivotal unknown in 
terms of the nonpivotals: 

1 2 43 2 3x x x=− − + x 5 and 3 4 2x x x=− − . 
Then clearly the vector 

2 4

2

4 5

4

5

3 2 3

2w

5x x x
x

x x
x
x

− − +

− −

        =         

 

will satisfy Ax 0=  since it obviously satisfies the reduced system. But what are 2x , 4x  
and 5x ? First we should observe they are the nonpivotal unknowns (or columns). Second, 
we do not require them to be anything, they can be arbitrary, and they are known then as 
free variables. So all solutions to the homogeneous system are captured in the 
expression  

2 4 5

3 2 3 3 2
1 0 0 1 0
0 1 2 0 1
0 1 0 0 1
0 0 1 0 0

w x x x a b

− − − −

− − −

                                                     = + + = +                                                                       

3
0
2

0
1

c −

      +          

 

where a, b and c are arbitrary scalars. This expression is arrived at when we separate the 
previous vector into the 2x -vector, the 4x -vector and the 5x -vector. 
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But in fact in order to solve any system one does not need to solve for the homogeneous 
separately as the following example shows. 
 

Example 7. Let . Then consider the following systems 

1 3 2 4 1
2 6 1 5 4
3 9 3 9 3
4 12 4 12 4

A
−
−
−

     =       

Ax b= , 

Ax c=  and Ax=

(

d

1
1
0
0

−     =       

c

)

 where b ,  and . As observed in the theorem, 

to find all solutions to each of those systems (if any), we will need the solutions to the 
homogeneous system. But reducing any system will always give us that since a column 
of 0’s will remain so through the reduction as observed before. Thus, we will reduce the 

matrix 

4
5
9

12

     =       

1
1
0
0

d

     =       

A b c d . When we do so we get the matrix  , 

which immediately tell us that 

1 3 0 2 3
0 0 1 1 2
0 0 0 0 0
0 0 0 0 0

−
−





1 2 0
1 1 0

0 0 1
0 0 0

  
Ax d=  does not have a solution.  

 
To solve Ax b=  we proceed as we did on the homogeneous system. All we have left are 
the two equations  and . Proceed to solve for 
the pivotal unknowns in terms of the nonpivotal ones—note that this can always be done 
since each pivotal unknown occurs in exactly one equation (with all other unknowns 
being nonpivotal). When we do we get 

1 2 4 53 2 3x x x x+ + − =1 1

5

3 4 52x x x+ + =−

1 2 41 3 2 3x x x x− − +=  and 3 41 2 5x x x=− − − . 
So clearly the vector  

2 4

2

4 5

4

5

1 3 2 3

1 2u

5x x x
x
x x
x
x

− − +

− − −

        =         

. 

is a solution to the system regardless what values 2x , 4x  and 5x  take. Separating the 
vector as we did in the homogeneous case, we get that  

u=

1 3 2
0 1 0
1 0 1

0 0 1 0
0 0 0

a b c

− −

− −

                                  + + +                                                 

3
0
2

1

−



 

where a, b and c are arbitrary real numbers is an arbitrary solution to the system Ax b= . 
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Note that the solutions look like the particular solution   added to an arbitrary 

homogeneous solution—and the particular solution was obtained by letting the free 
variables be 0. 

1
0
1

0
0

−

          



 

Similarly, for Ax c=

0=

, we can read from the reduced form a specific solution,  , and so 

we get all solutions     . Note that since c is nothing but the 

fourth column of A, one solution is given trivially by  , and indeed if we let a , 

 and  in the general expression we will get that specific solution. But even 
more importantly we could have written all solutions as being of the form  

2
0
1
0
0

          
2 3 2
0 1 0
1 0 1
0 0 1
0 0 0

a b c

− −

− −

                                + + +                                             

3
0
2

0
1



3
0
2

1

0
0
0
1
0

          

0=

1b= c

0 3 2
0 1 0
0 0 1
1 0 1 0
0 0 0

a b c

− −

− −

                                  + + +                                                 

 

since they both represent the same collection of vectors. 
 
 
Appropriately we end this important section with another historical Chinese problem. The 
example is from the book, (Zhang Qiujian) Mathematical Manual, which dates from the 
sixth century.  

One rooster is worth five copper cash; one hen is worth three copper 
cash; three young chicks are worth one copper cash. Buying 100 fowls 
with 100 cash, how many roosters, hens and chicks? 

 
If we let R  stand for the number of roosters, H  for the number of hens and C  for the 
number of chickens, then the conditions of the problem easily translate to the following 
two equations: 
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R H C+ + = 100  
1
35 3 100R H C+ + =  

 

Or in matrix notation this becomes 1
3

1 1 1 100
5 3 100
  

, which reduces to 4
3
7
3

1 0 100
0 1 200

− −    

   so 

we have that 4

3
100R C= −  and 7

3
200H = − C , so all solutions are given by  

 

100 4
200 7

30 1

R
C

H
C

−
−

            = +                 



85

. 

 
R  H  C  
12 4 84 
8 11 81 
4 18 78 
0 25 75 

In order for the solutions to make sense (be integers), we 
need to have C to be a multiple of 3, and also since 

 and , we must have C  and , 
so the only possibilities for C are 75, 78, 81 and 84. In 
fact, the solutions are  

0R≥ 0H ≥ 75≥ C≤

 
Although the method of solution was not included, the book gives the three positive 
solutions. Today we would probably list all 4, including the one with one of the 
unknowns taking the value 0. 
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 Inequalities 
 
So far, we have had an extensive discussion on linear equations. In this section we look 

in 2 . What does the inequality 2 3x y+ ≥  
represent, in other words what po  
plane satisfy this inequality. Simply, we know 
that 2 3 6x y+ =  represents a line. In fact for 
any n

briefly at inequalities, starting naturally 6

umber c, 
2 3

ints in the

x y c+ =  
represents a line, and if we choose , then 

hen we have more than one inequality, we see that we need to 

xample 1. (Mixing). To feed her stock a farmer can purchase 
rd requires 60, 84 and 

C 

6c ≥
all the lines are on one side of the original line, 
so that the original 
inequality represents 
one half of the plane, as 
in the picture. 

 

0

(0,2)
(1,2)

2 +3 =6x y
2 +3 =8x y

2 +3 =13x y

(4,4)

(3,0)

2 +3 =20x y

0

(0,2)

2 +3 =6x y

(3,0)

 
W
intersect all the half-planes as in the following example. 
 
 
E
two kinds of feed,  and . The farmer has determined that her he
72 units of the nutritional elements A, B, and C, respectively, per day. The contents per 
pound of each of the two feeds are given in the following table: 

Nutritional Elements (units/lb) 
 A B 

Fee  d 3 7 3 
Feed  2 2 6 
he amou pou  fe d If we let x and y denote t nt (in nds) of ed  an , respectively, then the 

conditions of the problem translate into the following constraints: 
3 2 60x y+ ≥  ( )A   7 2 84x y+ ≥  ( )B   3 6x y+ ≥ 72  ( )C  

However, we have another set of constraints, which are implicit in the problem: 

 
 we were to graph all possible solutions to this system of inequalities, we would see that 

x ≥ 0, y ≥ 0 . 

If
there are infinitely many solutions to it. In fact, if we graph the region for each of the 
inequalities, we obtain three unbounded regions: 

( )0,42

3 2 60x y+ =

0 ( )20,0

( )0,30

0 ( )12,0
3 6 72x y+ =

0 ( )24,0

( )0,12
7 2 84x y+ =
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and when we look at the intersection of 
the three regions we get a region of 
infinitely many points and with four 
corners:   and 

 
( )0 42, , 6 2( )1, , (18 )3,

3 4 90x y+ ≤
40 80 1600x y+ ≤
90 70 2250x y+ ≤

( )24 0, .

3 6 72x y+ =
0 ( )24,0

( )6,21

( )18,3

( )0,42

7 2 84x y+ =

3 2 60x y+ =

 
 
 
 
A very different region occurs in the 
following 
 
 
Example 2. (Building). A building contractor builds two types of houses, 3-bedroom and 
4-bedroom. A 3-bedroom home requires 3 units of glass, 40 units of wood and 90 units of 
block. A 4-bedrooom home requires 4 units of glass, 80 units of wood and 70 units of 
block. The contractor has available to him a total of 90 units of glass, 1600 units of wood 
and 2250 units of block. What productions are possible? 
 

If we let x and y denote the number of houses with 3 
bedrooms and 4 bedrooms respectively, then the 
conditions of the problem translate into: 

(glass)   
 (wood) 
 (block)  

Of course, we again have x ≥ 0, y ≥ 0 . 
 
Here the feasibility region is very bounded with five 
corners: , , ( )0,0 ( )25,0 ( )18,9 ,  and ( ) . 

But observe we needed the visual to aid in deciding that the intersection of the two lines 
 and  lies outside our region. An alternative would 

have been to find the point of intersection 

(10,15) 0, 20

40 80 1600x y+ ≤ 90 70 2250x y+ ≤
(  and observe it does not satisfy the 

third inequality, 
)3

11
5

1115 ,12
15
11

9
1148 90+ >45 . 

90 70 2250x y+ =
( )1

70,32
3 4 90x y+ =

40 80 1600x y+ =

( )0,20
( )1

20,22

( )30,0 ( )40,0( )25,0

( )18,9

( )10,15

0

 
 
One more simple example 
Example 3. Consider the following set of 7 inequalities: 

 4 9     x y+ ≥ 2x y+ ≥ 4
4

11 7
6

 2 0     x y− ≤ x ≤
     2x y+ ≤ 6 2 1y x− ≤

 . 6x y+ ≥
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The graph is as given with consecutive 
corners: ( )1, 2

),3

, ( ) , ( ) , ( ) , ( ) 
and . It is worth observing that the 

picture has the corner (  in which the 
three lines, ,  and  meet.  

3,1.5 4, 2

0.5,3

4,3

)

3.5, 4

(0.5

( )6,21

( )0,42

10 4 180x y+ =10 4 144x y+ =

0 ( )24,0
( )18,3

10 4 60x y+ =

10 4 240x y+ =

 
 
Of course, what happens in 3-space is very 
similar to what occurred in the plane. If we 
are given a linear inequality such as 

, then the set of points that 
satisfy this inequality is a half-space, all the 
points on the appropriate side of the plane 
given by the equation . And 

similarly, in higher dimensions, each linear inequality represents a half-space as 
delineated by the hyperplane given by the equation. 

2 3 4x y z+ + ≥9

C = +10 4

2 3 4 9x y z+ + =

0

( )1, 2
( )3,1.5

( )4, 2

( )4, 3( )0.5, 3

( )3.5, 4

 
 
There is an interesting problem associated with inequalities, one of optimizing (either 
minimizing or maximizing) a linear function, and there are two charming theorems 
associated with this problem—one is very easy to see graphically, while the other is 
rather deep, and much harder to prove. 
 
We will revisit the three examples above. 
To start with suppose that in Example 1, 
each unit of feed  costs 10¢ while each 
unit of feed  costs 4¢. Then we would 
be interested in minimizing the cost 
function, C, which is given by:  

x y . 
 
Of course, for any specific value of C 
that we choose, the graph of 
C = +10 4x y  is a line, but since we want 
our constraints satisfied we need a line that intersects the region, but that gives as low a 
value of C as possible. Of course, all the lines we get by giving different 
value to C, are parallel, and as the picture indicates, we will obtain a 
minimum at the corner ( . In fact, if we compute the cost at each of 
the four corners, we get: 

)6 21,
x y C 
0 42 168
6 21 144
18 3 192
24 0 240 

 
And the minimum cost would be achieved with 6 pounds of feed  and 21 pounds of 
feed . 
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This simple example illustrates one of the two theorems mentioned above: 
that a minimum or a maximum—if it exists—will occur at one of the 
corners of the region. 

 
Certainly, if we had asked for the maximum cost, there is no point that will give us that. 
 
The second theorem, more subtle and harder to prove is that : 

next to each corner, there is a corner that is smaller unless one is at 
the minimum already. 

 
In other words, 

if you are better than your neighbors, you are better than anybody else. 
 
Note a crucial omission on the statement of the first theorem, the word ONLY. The 
minimum can occur at other points as well—for example if the cost had rather been given 
by 6 4C x y= +

6 2,
, then the minimum value of C not only would have occurred at the 

same corner ( , but also at the corner (
120=

)1 )18,3  as well as any point in between such as 

. ( ),1212
 
We illustrate these two theorems in the other two examples. 
 
Suppose that in Example 2, the profit in a 3-bedroom house 
is $40,000 while the profit in a 4-bedroom is $60,000. Then 
the profits at the corners (in thousands of dollars) are given 
by the table on the right, and we see the second theorem 
illustrated again—next to the maximum corner ( ) , 
there are corners that are less profitable. 

10,1

x  y  P  
0 0 0 
0 20 1,200 
10 15 1,300 
18 9 1,260 
25 0 1,000 5

 
Of course, any nonnegative function would have a minimum at the corner ( ) . 0,0
 
Finally, in Example 3, no matter what function F  we pick, the minimum and 
maximum will exist at one of the corners. And by choosing different values for a and b, 
one can make different corners be the optimal points, as the following two simple 
examples illustrate:  

ax by= +

4a=−  10b=  2a=  6b=  
x  y  F  x  y  F  

0.5 3 28 max  0.5 3 19  
1 2 16   1 2 14 min 
3 1.5 3 min  3 1.5 15  
4 2 4   4 2 20  
4 3 14   4 3 26  

3.5 4 26   3.5 4 31 max 
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Naturally, to extend the understanding to higher dimensions, the notion of corner had to 
be carefully defined, and the notion of neighboring corners be suitably extended. This 
belongs to a higher course than this one, but it does involve pivoting. 
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 The Geometry of Vectors 
 
As often happens in mathematics, the power of analytic and algebraic tools is only 
enhanced via the visualization of geometric thought, and that is exactly what we pursue 
in this section. Thus we concentrate on vectors of size 2 and 3 in order to gain 
understanding that then will be extended to arbitrary vectors.  
 
Some notation:  denotes the set of vectors of size 2,  the collection of vectors of 
size 3,  those of size 4, etcetera. Abstractly,  will denote those vectors of size n.  

2 3

4 n

 
Naturally, we start with the well-known plane that we inherited from Descartes and 
Fermat, but we see it not from a 17th century point of view, but from a 19th century 
perspective. In contrast to Cartesian (or complex number) notation, we will now use 
vectors (of size 2) of real numbers to denote points in the plane, thus 

 denotes the origin,   and   the unit points of the axes, 

respectively. Not much has changed from the Cartesian perspective, 
but we are really discussing the vector plane. We 
view points not only statically, but also 
dynamically, as an arrow starting at the origin 
and ending at the point. But more generally, a 
vector, which has both direction and magnitude, 
is not necessarily anchored at the origin, and we think of it as the 
same vector no matter where it starts as long as its direction is the 
same and its length (or magnitude) is the same. In other words, one 

often thinks of a vector as a change from one point to another, and two changes are the 
same if their direction and magnitude are the same.  

0
0







1
0




0
1










 

0

6
6

4
1

2
5

0
7

-2
2( (

( (
( (

( (

( (
Example 1. 


 is the vector from the origin to that point, but it is 

also the vector from  to 


, since    
 and similarly 

 is the vector from 
  to 

  for the same reasons. 

2
5


4
1
    

2
−

6
6


6 4 2
6 1 5
       − =        

2
5
    

2 
0
7
 

 
In a more formal way, a vector is really a pair of points, the starting point and the end 
point, and two pairs are considered equal if there is a translation taking the one pair to the 
other. We will refrain from using this formal approach. For us vectors will be anchored 

at the origin. If we were to encounter 2
5
 

, do we think of it as the simple static 

point, or do we think of it as a vector? It is important that at all times we keep in 
mind both possibilities, and decide which fits the situation best.  


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Of course, vector (or matrix) addition is well suited for geometry. It 

represents the parallelogram law: 
     

.  3 1 4
1 5

     + =       6


nitude has been 

a

u

 
 
Scalar multiplication is also 
very well suited for geometry. 
It amounts to a vector in the 
same direction but whose mag
multiplied by the scalar factor.  

u

v

u v+

3
1

u
 =   0

6
2

2u
 =   

0

 

u−

u
0Of course, a negative scalar reverses the direction 

since . ( )u u 0+ − =

2u
3u

u1
3 u

 
 
This simple idea of scalar multiplication leads to one of 
the important concepts in geometry, that of a line. If u  is 
a nonzero vector, then, the ray of u u . That 
our definition agrees with our intuition is easily seen from 
the picture.  

{ | 0t t= ≥ }

 
Note that the points between the origin and u  have t’s t
are between 0 nd 1, w  th

hat 
hile ose passed u  have t > 1. 

2u−
3u−

u−
1
3 u−

 
Also, by considering all real values of t, 

, in other words, by taking all 
multiples of , we obtain 
[ ] { }|u ut t= ∈

u

2u
3u

u1
3 uthe line in the direction of , 

or the line that goes through  and the origin. 
Note that from this point of view you can think 
of  as both a point and a vector because both 
the point u  is on the line, and the vector  lies 
on the line—both are true.  

u

u
u

 
In this course we will be mostly interested in collections of 
vectors with the origin among them, so our lines will be 
mostly of the type we have just described, the multiples of 
a vector. But we should observe that for a line not going 
through the origin, the points that are on it are never the 
vectors that lie on it—and often in other courses, where 
all kinds of lines are considered, that can lead to confusion. 

Observe that we have used [  to denote the set of multiples of u. ]u
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One of the great advantages of the vector approach to geometry is the uniformity of 
description of a line in space of any size: , , , etcetera. Namely, if we extend 
our thinking to vectors of size 3, we realize that the collection of all multiples of a vector 
form a line, but now, in space, and so by further extension, when we move to vectors of 
size 4, namely to , we then think of a line through the origin as all multiples of a 
nonzero vector.  

2 3 4

4

 
And so in , a line through the origin is the set of all multiples of a nonzero 
vector. And thus a line is always a one-dimensional object since it is generated by a 
single vector. 

n

 
 
Returning to , suppose we are given two nonzero vectors,  and 2 u v . It could be that 
one of them is a multiple of the other, if that is the case they lie on the same line, they are 
parallel, then the set of linear combinations of the two of them 

 is nothing but the set of multiples of either, [ ]. 
But suppose the more interesting case occurs, when neither is a multiple of the other. 
Then we know that the set of all multiples of u, [ ]  is the set of all points on the 
line through the point u 
and the origin, or 
equivalently, the line in the 
direction of u. Similarly 
for v, and so we are adding 
any vector in the one line 
to any vector in the other 
line, and as the picture 
illustrates, we are really 
filling in the plane.  

[ ] {, | ,u v u a b= + ∈ }

u

va b ] [ ] [,u v u v= =

{ }u a=

 
The argument is as 
follows: let x be an arbitrary vector (point), and draw the two perpendiculars to the two 

respective lines 
through the new 
point, and draw 
them until they 
intersect the other 
line, then the two 
vectors obtained in 
this fashion are 
indeed multiples of 
u and v, and they 
satisfy 

v
u

[ ]v

[ ]u

x x
vb

ua

 
 

x u va b= + . 
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Thus, we realize the important fact that the collection of linear combinations of any two 
vectors in the plane either constitute a line (if the vectors happen to be multiples of each 
other), or they fill in the plane. But the geometric picture we have just seen extends easily 
to vectors in space, vectors of size 3, and so we have a way of again extending our 
intuition: 
 

let u  and v  be nonzero vectors in . Then the set of linear combinations 
of the two of them, also known as their span, [ ]  
is either a line (if the vectors happen to be multiples of each other), or it is 
a plane (through the origin). 

n

{, | ,u v u va b a b= + ∈ }

5
12

 
Again, one of the advantages of approaching the geometry of the plane from the vector 
point of view is that the notions discussed there readily extend to 3-space, and indeed 
they extend to vectors of any size. One of the key observations toward acceptance of 
these remarks is the fact that any time two points are given in 3-space (or higher), then 
there is a plane in 3-space containing those two points as well as the origin, and therefore 
we are reduced to considerations in the plane. 
 
Enough has been said about lines and planes for the time being. Let us turn to other 
important notions from geometry: lengths, areas and angles. 
 

What is the length of the vector 
  

? Of course, with the aid of 

the great ancient Pythagorean Theorem, we see that the length of 
this vector is 2 25 12 13+ = . In general, for any vector in , 2

u=
x
y

    
, its length is given by 2 2x y+ . The length of a vector 

is usually denoted by u  or u . We will use the first of the two, 

u , to denote the length of u. But we can make immediately an obvious, yet important, 
connection with matrix multiplication: the square of the length is the dot product of a 
vector with itself, or equivalently the result of multiplying the transpose of the 
vector by the vector,  



5

12

 
2

u u u uΤ= ⋅ = u . 
 
By looking at a similar picture in , we arrive at the same 

result namely that for a 3-vector 

3

x
y
z

  



 , its length is given by 

2 2 2x y z+ + , and so once again we use what we know in the plane and in 3-space to 
extend to higher dimensions, and so we will agree that the length of a vector u in  is 
given by  

n
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2
u u u uΤ= ⋅ = u . 

 
It is clear that the length is a positive quantity unless we are discussing the 0 vector 
which naturally has length 0. A vector is known as a unit vector if its length is 1, e.g., 

3
5
4
5

     
 and 

2
1

6
11 9

       
 are unit vectors. Clearly for any vector u, u

u
±  is a unit vector. 

 
We next look at area (and volume). Again we start in 

, and suppose we are given two vectors as in the 
picture. Then by looking
we ask  
 
what is the a

2

 at the parallelogram they form, 

 
ertainly we can envel

areas in the picture to get to the 

ea

Thus, we have the area of the parallelogram is 
 

area =
 

nd we readily observe that this equals the determinant of the matrix formed from the 

two vectors. Namely, if 

rea of 
at parallelogram? 

ope the parallelogram in a 

v
c
d
 =   

u
a
b
 =   

c
d
    

a c
b d
+
+

    

a
b
    

th
 

C
rectangle with area  

e to do is subtract the shaded 

c
d
    

b d+

a
b
    

( )( )a c b d ab bc ad cd+ + = + + +  
and all we would hav

area of the parallelogram. But 
sily 

a c+    
 
 
 
 
 
 
 
 
 
 

Region Area 

 
2bc  

 
ab  

 
cd  

 

2ab bc ad cd bc cd ab ad bc+ + + − − − = −  

A

A
b d

=  
det

a c 

, then the area formed by the two vectors equals 

determinant of A, abbreviated to A . Thus, we can claim that  
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the area of the parallelogram formed from two vectors is equal to the determinant 
of the matrix formed with those vectors as its columns. 
 
But the keen reader may appreciate the fact that there are two matrices that can be formed 
from two vectors, and thus we need to briefly discuss the orientation of two vectors in 
the plane. 

Given two nonzero, nonparallel 
vectors  and u v , then we see we can 
sweep from one vector to the other 
two ways, one which is more than 

, and one which is less than 
. We will always mean by the 

sweep from one vector to the other to be the one which is less than 180 . Thus in our 
picture, the sweep is the one on the left. The sweep from one vector to the other can go in 
one of two directions, clockwise or counterclockwise, and traditionally the former is 
negative orientation while the latter is positive. So in our picture the sweep from u  to 

180
180

v  is counterclockwise while the sweep from v  to u  is clockwise. 

u

v v

u

 
It is then an interesting geometric fact (but not of great consequence to us since we will 
be mainly discussing determinants of matrices), that the determinant of a 2  matrix 
is positive if its columns are positively oriented and negative otherwise.  

2×

 

Example 2. The area of the parallelogram with edges 
  

and  is the determinant of 


 which is 39, which 

means that the area of the triangle with vertices the origin, 

 and 
  is half of that, 

7
1
 

3
6


3
6
    

7
1

7
1
    

3
6
 

39
2

. Note that if we had used the 

matrix 


 we would have obtained 3
6 1

7



−39  instead, and in 

fact then the angle between the vectors would be going clockwise instead of 
counterclockwise, and the orientation would be wrong, and that is why a negative 
determinant was obtained. Thus, the determinant not 
only computes area, but also the orientation of the 

vectors. 
 
Now we move on to 3-space, 
and volume. Given three vectors 
in space, we easily visualize the 
parallelepiped that they form. 

This is similar to the parallelogram formed by two 
vectors in the plane. In the plane case, we saw that the 
determinant of the matrix formed by the two vectors was in absolute value the 

0

10
7( (

7
1( (

3
6( (
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area of the parallelogram formed by the two vectors. So we should not be surprised 
to find the theorem that states that the volume of the box made by three vectors in 
space is the determinant with the orientation of the three vectors determining the 
sign. We will not prove this theorem, but nevertheless we state it.  
 

Theorem (Determinants and Volumes). Let , u v  and w  be vectors in 
3-space. Then the volume of the box they form is ( )±det A  where 
( )A u v w= . 

 
Of course, the sign depends of the orientation of the three vectors. In the plane we had 
two possible orientations: clockwise ( )−1  and counterclockwise ( )1 . In 3-space we have 
6 orientations, three of them positive and three of them negative. The basic positive one 
is x-y-z and its cyclical permutations: y-z-x and z-x-y. 
 

Example 3. Let u , =
1
4
7−

       
v =

2
1

4
−
       

 and w =
0
1

2
−
       

. Then , which 

means the box has no height, or that the vector 

( )det 0u v w =

w  is in the same plane as  and u v . 

Indeed, 9 2w v− u= . On the other hand, if u , =
1
4
7−

  


v =

2
1

4
−
       

 and w =
1
1

2
−
       

, then the 

volume of the box is 9. 
 
We are not yet ready to define determinants in any size, so we will postpone further 
discussion of them. But of course, when we do, they will represent volumes in that 
dimension.  
 
 
We are ready to discuss the third important geometric concern, angle. Again, we start in 

. Clearly, the angle between two vectors in the plane is the same as the angle between 
their rays, since it is really these that determine the angle. Thus, we can without loss of 
generality take the two vectors to be of length 1.  

2

θ

ad bc−

 

So let , and u= 







b
a v = 








d
c

θ

 be two unit vectors, so  and 

. We will let  denote the angle between them.  

2 2 1a b+ =

2 2c d+ 1=
 

 
We know that the area of the parallelogram that the two vectors form is the determinant 

 (if we assume the vectors are positively oriented). But since the base of the 
parallelogram is 1, this determinant represents the height of the parallelogram. Thus from 
the picture, we know  

sin ad bcθ= − . 
But then since  
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( )( )2 2 2 2 2 2 2 2 2 2 2 21 a b c d a c a d b c b d= + + = + + + , 
we have that  

2 2 2 2 2 2 2 2 2 2 2 2 2 2cos 1 sin 2a c a d b c b d a d abcd b cθ= − θ= + + + − + −  
( )22 2 2 22a c abcd b d ac bd= + + = +  

And so we arrive at the fact 
cos u v u vΤθ= ⋅ = . 

 
If the vectors had not been unit vectors, then the equation would have been 

cos u v
u v
⋅θ=  

because from any vector u, we can obtain a unit vector in the same direction by simply 
dividing by its length. 
 

Example 4. Let u  and = 3
3−

    
v = 3

2−
    

. Then 15
18 13

θ=cos , so . 11.31θ ≈

 
From the cosine expression, we immediately get that two vectors are perpendicular to 
each other, which means the angle between them is 90 , if and only if their dot product is 
0. For us, vectors are orthogonal is a synonym to their being perpendicular. We will use 

 to denote that u  and u v⊥ v  are orthogonal. 
 
Example 5. Let u . Then = a

b





 v = −








b
a

 satisfies u v , and so u v . 0⋅ = ⊥

 
Example 6. Clearly in , if we take a nonzero vector u, then all vectors orthogonal to it 
constitute a line through the origin. 

2

 

Specifically, let . Then when we ask for all vectors x 

orthogonal to it, we are asking for all vectors that 
satisfy . But as usual, it is smart to switch 
to matrix multiplication, so we are asking for all 
vectors x that satisfy the equation , or 
equivalently, all solutions to the equation  
where 

2
3

u
 =  

)




0u x⋅ =

(

u vΤ

Ax=
A uΤ= . Thus, in our specific case, 

, so then our vectors (2 3A= ) x
x
y

 =   

2 3+

 must satisfy the equation 

. Of course other linear equations with the same coefficients, such as 
, represent lines parallel to . 

2 3x y+ =
2 3x y+ =

0
5 0x y=

0=
0
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Moving on to 3-space is easy, since as aforementioned, every two vectors lie in a plane, 
the notion of angle is identical in 3-space and hence in any space as in the plane, for any 
two unit vectors, their angle is given by  

cos u v u vΤθ= ⋅ = . 
Thus, from our point of view, more importantly, two vectors are orthogonal if and only if 
their dot product is 0, or equivalently,  

0u v u vΤ⋅ = = . 
 
But the geometry of all vectors perpendicular to a given vector changes although the 
algebraic expression remains the same. 
 

Example 7. Let u . What is the shape of all vectors perpendicular to 

this vector? It is the plane of all vectors x

1
2
3

   =     
x
y
z

   =     
 that satisfy the linear 

equation . Equivalently these are the vectors that satisfy the matrix 
equation  where , i.e., the equation . 

2 0x y
0Ax=

3z+ + =
A (1 2 3= )

}

2 3 0x y z+ + =
 
Thus, a linear equation will no longer represent a line in 3-space, but rather it will be a 
plane, and in higher dimensions a linear equation with 0 constant, which represents all 
vectors perpendicular to a given vector, is referred to as a hyperplane. 
 
Example 8. Consider a single nonzero vector u of size n, and its orthogonal complement, 

. We will view it in different situations: {u x u x⊥ = =| Τ 0
 

n  u  x  u⊥  Geometric Shape 
2 a

b
    

 x
y
      ax by+ = 0  A line in the plane 

3 a
b
c

       
 

x
y
z

       
 ax by cz+ + = 0  A plane in 3-space 

4 a
b
c
d

           

 

x
y
z
w

           

 ax by cz dw+ + + = 0  A hyperplane in 4-space 

n 
1

n

a

a

         
 

1

n

x

x

         
 1 1 0n na x a x+ + =  A hyperplane in n-space 
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Thus, in general, the shape of  is what is referred to, as we saw above, 
as a hyperplane. 

{ |u x u x⊥ Τ= = }0

 
Then of course the geometric nature of all the solutions to a linear system is clear then as 
the intersection of various hyperplanes. 
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 The Subspaces of a Matrix 
 
With a little bit of geometric understanding, we now return to one of the central themes 
of the course: linear systems. Let an  matrix A be given. Then there are two 
collections of vectors that are of interest: 

m n×

 for which b’s does the system Ax= b  have a solution? 
   which u’s are solutions to the homogeneous system Ax 0= ? 
 
 
We discuss  first. We already have an answer for it: b will be in this collection, that is, 
Ax b=

( )

 will have a solution, if and only if b is a linear combination of the columns of A. 
Hence this collection of vectors is known as the column space of A, and is denoted by 

AC . 
 
Certainly ( )AC  is a collection of vectors of size m, so ( )AC  is contained in , and we 
are ready to make three key observations about this set: 

m\

  is in 0 ( )AC  since Ax 0=  can always be solved—at least trivially, 
A0 0= . 

 
 If b and c are in ( )AC , then so is their sum, b c+ ( )A∈ C 1. The reason for 

this is easy. If u and v are respective solutions to Ax= b  and Ax c= , 
then  is a solution to u v+ ( )Ax b c= + : ( )A u v Au+ = Av+ b= c+ . 

 
The last property is similar to the previous one. 

 If b is in ( )AC , and a is any scalar, then  also. Let u be a 

solution to 
( )ba ∈ C A

Ax= b , then ( ) .A u Aua a a= = b  
 
 
Any collection of vectors in  that satisfy these three properties will be referred to as a 
vector space or vector subspace (or just subspace), and this is an important concept. 
That is why we call the previous example the column space of a matrix. 

n\

 
Thus ( )AC  consists of all linear combinations of the columns of A, and it is also known 
as the span of the columns. The name makes sense if one recalls that the span of two 
vectors is a plane as we saw before. 
 
Thus the span of any set of vectors is the set of linear combinations of them. In symbols 
if 1w , 2w , …, wn  are vectors in , their span, denoted by [ ]m\ 1 2, , ,w w wn… , is the set 
of their linear combinations:  

[ ] {1 2 1 1 2 2 1 2, , , | , , ,w w w w w wn n na a a a a a= + + + ∈… " }n… \
                                                

. 
 

1 The symbol ∈  reads belongs to or is in. 
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The connection is clear. 
 

Theorem (Column Spaces). Let ( )1 2A w w wn= "  be an m n  

matrix. Let b . Then the following three conditions are equivalent, 

×
m∈\

 .  ( )b A∈ C

  b is a linear combinations of the columns of A, b∈ [ ]1 2, , ,w w wn… . 

 There is a vector  such that u n∈\ Au= b , or in other words, the 
system Ax= b  has a solution. 

 
Example 1. Of course, [ ]  is a line as long as { }|w wa a= ∈\ w 0≠ .  
 
Consider now two vectors, w and v, and let ( )A w v= . And assume neither vector is 0. 

If [ ]v w∈ , then we know that [ ] [, ]w v w=  is just a line, while otherwise it is a plane. But 

observe that [ ] [, ]w v w=  only if r  since v could not be pivotal if ( ) 1A = [ ]v w∈ . 
 
Let w , v  and u  be nonzero vectors in , and m\ ( )A w v u= . Then ( )AC  is either a 
line (if all the vectors happen to be multiples of each other), or it is a plane (if one of 
them is in the span of the others), or they generate a 3-dimensional type subspace in . m\
 
 
Example 2. What is the column space of the identity I ? Clearly if , every vector 

can be written as a linear combination of them:     , so the columns 

span all of . One can readily see this is always the case, . From the 
equation point of view this is also obvious since we are asking whether we can solve 

 for any given b. 

m

 
  

3m=
0
0
1

c
   +     
( )Im = \

1 0
0 1
0 0

a
b
c

a b
           = +              

C3\ m

Ix b=
 

Example 3. What is the column space of the matrix ? Equivalently, 

what is the span of 

1 0 0 1
0 1 0 2
0 0 1 3

A
   =     

1
0
0

    

 , ,  and 
0
1
0

       

0
0
1

       

1
2
3

    

 ? Clearly, since the first three vectors already 

span all of , these four vectors will also span . 3\ 3\
 

Example 4. Let . Then of course 
1 4 9
2 5 12
3 6 15

A
   =     

( )AC  is the span of w=
1
2
3

       
, v =

4
5
6

       
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and u . Since they are all nonzero, they each generate a line, and also since none of 

them is a multiple of another, we do have that any two of them span a plane. But what is 
not at all clear is whether they are all in one plane, or that indeed they generate or span all 

of . But A reduces to 

=

3\

9
12
15

       

1 0 1
0 1 2
0 0 0

    



)

 , so we know that  (by the Nonpivotal 

Columns Lemma of the last section). Hence any linear combination of w, v and u, is 
simply a linear combination of just w and v:  

2u w v= +

( )wc a= +

2

wa c+ +

u v= −
3\ ( )AC [ ] [w u v u= =

= ( ) (A =

Ax=

7
8

10

 =  

1



w 2w \

3
1
7
0
0

          

I




( ) (2 2w v u v w va b b c b c+ + + + = + . v

But also just as easily, w , or (1
2 )v u w= +

[ ],

. And so we have that the span of all 

three vectors is a plane in , = [ ], , ,w v u w= v . ],
 

Thus, if B , then 
1 4
2 5
3 6

       
)BC C .  

 

Yet if we were to ask which of these systems has a solution , or , or 

, we would need to resort to reducing in order to answer the questions. That is 

because at present there is no clear way of writing a vector as a linear combination of the 
columns of a matrix. However, there is an exception to this. So we pause to consider a 
useful idea. 

2
5
8

       

2
5
6

Ax
   =     

Ax

 
Let , , …, wn  be vectors in . We will refer to them as transparent if there is a 
set of positions among the rows of the w’s, we can pick n of them to be I . For example, 

,   and   is transparent since we can see the identity matrix  in rows 2, 4 and 5. 

But also observe that once a set is transparent it becomes trivial to write which vectors 

are linear combinations of them: they are the vectors of the form  , and so we 

m

n

a c

+ +

1
0
2
0
1

             

0
0
4
1
0

          

3

3

7 4 2
a

a b c
b
c

+  
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can instantly decide that   is a linear combination of the three 

vectors. Equivalently, 

7
2

12
1

1
−

          
0
0
4
1
0

3 0 1
1 0
7 4
0 1
0 0 1

2 +

                     = −                              

0
2
0


1 3
0 1
2 7
0 0
1 0

x

  




  has a solution, u  =

7
2

12
1

1
−

             

( )

1
2
1−

   =     

1 4
2 5
3 6

A
= 

AC

∈\

AΤ

1
2
0

−  
)

( )AC




( )AΤC

 

Returning to our previous example where we consider . Then we claim that 

 and 

9
12
15

  
1
0
1−

       

0
1
2

    

  is a transparent set that spans , so an alternate description of the plane 

is  where . Then easily we could say that of , or , or 

, only the first of the three systems has a solution. We will soon see how to 

arrive at the transparent set. 

2



Ax=

a
b
b a−

7
8

10

       

  
,a b

2
5
8

       
Ax=

2
5
6

Ax
   =     

 

In a slight twist, let us now consider the span of the three vectors: 
1
4
9

    

 ,  and 
2
5

12

       

3
6

15

    

 . 

Note that these are the columns of , or equivalently the rows of A. Since the reduced 

from of AΤ  is 
1 0
0 1
0 0



 , we see again that (AΤC  is also a plane. This is not a 

coincidence. Neither is the fact that the nonzero rows of this reduced matrix form the 
transparent set that spanned  above.  



 

To reaffirm this connection, since the reduced form of A was 
1 0 1
0 1 2
0 0 0

  
 , 

1
0
1

    

  and 
0
1
2

    

  form 

a transparent set that spans . 



 



 83 

These connections will be made clearer in the next section. 
 

Example 5. Consider the matrix M . Then we know the column 

space 

1 4 5 6 2
2 7 7 10 3
1 3 16 8 5

3 12 15 18 6
−

     =       
( )MC

12u u= +

 is a subspace of , but it is not clear at all what it consists of. But actually, 

,  and , and so 

4\

5u2 5 3 1 3u u=− +u 4 1 52 2u u u= + ( )MC

(

 is the plane spanned by 

 and . When we reduce  we get  , so 1u 5u MΤ

1 0 13 3
0 1 7 0
0 0 0 0
0 0 0 0
0 0 0 0

−
          

)MC  consists of all vectors of 

the form  .  
13




7a b

  3

a

b

a

−

 
Example 6. The Column Space of a Reduced Matrix. Consider as a specific example, 

the matrix A=

1 * 0 * 0
0 0 1 * 0
0 0 0 0 1
0 0 0 0 0

           

, which is reduced. For which b’s does the system Ax b=  

have a solution? Or equivalently, what is the column space of A? As we saw before, 
Ax b=  will have a solution if and only if the fourth coordinate of b is 0. Thus the column 

space of A consists of all vectors of the form  . Note then that it is the subspace of \  

which is the span of the three pivotal columns of A, , , and  , a transparent set. 

The other two columns are not necessary since we can readily see that the second column 
is a multiple of the first one, and the fourth column is a linear combination of the first and 
the third. Again, this is not surprising since we saw before that the nonpivotal columns 
are always linear combinations of the pivotal ones. 

0

a
b
c

       

4

1
0
0
0

           

0
1
0
0

           

0
0
1
0

       
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Example 7. The Column Space of a Matrix. Consider now any matrix whose reduced 

form is of the type in the previous example— A=

10 30 3 55 1
16 48 5 89 2
10 30 2 50 2
13 39 3 67 1

           

 is such a matrix, and 

its reduced form is M . Then in the reduced form we observe trivially 

that the second column is three times the first one—but the same is true in the original 

matrix (recall the Nonpivotal Columns Lemma), and that is simply that M 0  if 

and only if 

=

1 3 0 4 0
0 0 1 5 0
0 0 0 0 1
0 0 0 0 0

           

3
1

0
0
0

−
      =       

3
1

0
0
0

A 0
−
      =       

1

. Similarly, we see that the fourth column of M is 4 times the first 

one added to 5 times the third one, and the same is true for A—again  if and 

only if 

4
0
5
1

0

M 0
−

 = 


4
0
5

0

A 0

 = 
−



. Thus, we know then that the first, third and fifth columns of A span its 

column space. And since the reduced form of AΤ  is  , we know the column 

space 

1 0 0 4
0 1 0 2
0 0 1 0.5
0 0 0 0
0 0 0 0

−
          

( )AC  consists of vectors that are of the form 

24 2 c

a
b
c

a b− +

         

  
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As an easy corollary to the definition of column space we add to our understanding of the 
existence of solutions: 
 

Corollary (Existence of Solutions). Let A  be m . Then the following 
are equivalent: 

n×

 ; ( )A m= \C

 Ax b=  will have at least one solution for every b ; m∈\
 A has full row rank; 
 . ( )Ar m=

Thus, if , then since 2, we know C , so every system of the 

form 

1 2 3
4 5 6

A
 =  


 ( )Ar = ( ) 2A = \

Ax b=  will have a solution—in fact infinitely many. 
 
The following is a useful fact that we have tacitly been using above. 
 

Theorem. Let 1w , 2w , …, wn  be vectors in . If  is a linear 
combination of the w’s, that is, if 

m\

2

v m∈\

1 1 2v w w w

\
nc+ +" nc c= +  for some 

scalars , then 1 2, ,c c , nc… ∈
[ ]1 2, , , ,w w w vn =… [ ]1 2, , ,w w wn… . 

Proof. Obviously, since 
1 1 2 2w w wn na a a+ + +" = 1 1 2 2 0w w wn na a a+ + + +" v ,  

we have that [ ]1 2, , ,w w wn…  is contained in [ ]1 2, , , ,w w wn… v . Conversely, if we take an 
element of the latter subspace, 1 1 2 2w w wn na a+ + + +" va a , then by substituting by v, 
we get 

1 1 2 2w w wn na a a+ + + +" va  
( )1 1 2 2 1 1 2 2w w w w wn n n na a a a c c c= + + + + + + +" " w  

( ) ( ) ( )1 1 1 2 2 2w w wn na c a c a c= + + + + + +" n , 

which is clearly in [ ]1 2, , ,w w wn… .  
 
Basically what this theorem claims is that  

a vector that is in the span of the others is not needed for the span. 
 
By just taking one column at a time, we get 
 

Corollary. Let A be m  and let B be m . Suppose  is contained 

in 

n× q× ( )BC

( )AC . Then if M is the horizontal stacking of A and B, , we 

have . 
(M A B)=

( ) ( )M A=C C
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Now that we have thoroughly discussed the column space, we are ready to start with the 
second very important subspace associated with a matrix. As usual, we are given an 

 matrix A. Let us continue with question :  m n×
 

which u’s are solutions to the homogeneous system Ax 0= ? 
 
The collection of all such u’s is called the null space of A , and it is denoted by ( )AN . 
Certainly given a vector, we can readily decide if it in this set or not by simply 
multiplying by A. If we get 0 it is, if we don’t, it is not. We immediately justify the use of 
the word space. 
 

Theorem (Null Spaces). Let A  be . Then its null space, m n× ( )AN , is a 

subspace of . n\
Proof. We have to show the three properties of subspaces. Trivially,  is in the null 
space since 

0
A0 0= . Suppose that u and v are both in the null space of A, that means that 

we have both Au= 0  and Av 0= . But then trivially, ( )A u v Au 0 0 0+ = = + =Av+ , 

by distributivity, so  is also in u+ v ( )AN . Similarly if a is any scalar, and , 

then 
( )u A∈ N

( ) ( )A u Aa a u= = 0 0=a , so .  (u A∈ N )a
 
But additionally, we already know how to find the solutions to any system, so we can 
describe the null space as the set of all linear combinations of a set of vectors—which is 
actually transparent. 
 

Example 8. Let . Then its reduced form is 
 1 2 3

1 1 1
A

 =  



1 0 1
0 1 2

−  
, so ( )AN  consists of 

all vectors of the form  where t . The shape of this subspace is that of a 

line, all multiples of the vector 

1
2

1
t −
   =    

2
t
t
t

−
       

1
2

1
−
    

∈\

 . 



 

Example 9. Let . Then it reduces to   and so the 

set of solutions is the span of the vectors  ,   and  , and as remarked before 

1 3 2 4 1
2 6 1 5 4
3 9 3 9 3
4 12 4 12 4

A
−
−
−

     =       

1 3 0 2 3
0 0 1 1 2
0 0 0 0 0
0 0 0 0 0

−       
3
0
2

0
1

  

3
1
0
0
0

−          

2
0
1

1
0

−

−

          

−



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this is automatically a transparent set. 
 
 
Again as an easy corollary to the definition we obtain the following: 
 

Corollary (Uniqueness of Solutions). Let A  be . Then the 
following conditions are equivalent: 

m n×

 ( )A 0=N ; 

 Ax b=  will have at most one solution for every b ; m∈\
 A has full column rank; 
 .  ( )Ar n=

 

For example, since A  has rank 2, every system of the form 
1 4
2 5
3 6

   =     
Ax b=  will have at 

most one solution, and since it is not of full row rank, there will be systems with no 
solutions. 
 
 
In another version of an old result 

Corollary (Linear Systems). Consider the system Ax b=  and let u be a 
particular solution, then all solutions are given by the set . ( )u A+N

 
Thus, the shape of solutions is that of a flat subspace of the same shape as ( )AN  since we 
are simply translating the subspace to pass through a specific solution to the system 
Ax b= . In particular, if , then the system will have infinitely many solutions. ( ) 0A ≠N
 
Of course, if S and T are both subsets of a vector space, then one defines their sum, 

. { }S T S T+ = + ∈ ∈u v u v| ,
 

Example 10. Let A . Then since the vectors  ,  and   

span its null space, every system 

1 3 2 4 1
2 6 1 5 4
3 9 3 9 3
4 12 4 12 4

−
−
−

     =       

3
1
0
0
0

−          

2
0
1

1
0

−

−

             

3
0
2

0
1

−

          
Ax b=  that has a solution u , will have all solutions in 

the form . 

3 2 3
1 0 0
0 1 2
0 1 0
0 0 1

a b c

− −

− −

                          + + +                                      

u




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Thus with every  matrix A we have associated two spaces of vectors, m n× ( )AC , the 

column space, a subspace of , and m\ ( )AN , the null space, a subspace of . If we now 
consider the same spaces but for the transpose matrix, we obtain another two spaces: 

n\

( )AΤC , the column space, a subspace of , and n\ ( )AΤN , the null space, a subspace of 

.  m\
 
A key observation is then that ( )AΤC  and ( )AN  are both subspaces of the same space 

. Similarly, n\ ( )AC  and ( )AΤN  live in the same place, . There is a very intimate 
relation between the two pairs of subspaces.  

m\

 
 
Recall that we say that two vectors u  and v  are perpendicular if u v , and we 
denote this fact by u . Then: 

0u vΤ⋅ = =
v⊥

 
Theorem (Orthogonal Complements). Let A be . Let u be a vector 
of size n and let w be a vector of size m. Then the following are true: 

m n×

  if and only if u  for every ( )u∈ N A v⊥ v ∈ ( )AΤC . 

 ( )w AΤ∈ N  if and only if w v⊥  for every v ∈ ( )AC . 

  if and only if u  for every (u AΤ∈C ) v⊥ v ∈ ( )AN . 

 ( )w A∈C  if and only if w v⊥  for every v ∈ ( )AΤN . 

Proof. Clearly,  is the same statement as  but applied to the matrix AΤ , and similarly 
for  versus . Now v ∈ ( )AΤC  if and only if A yΤ = v  for some . Let us 

consider 

y m∈\

A y uΤ ⋅ ( )A y u
Τ

= = y AΤ Τ u y Au
ΤΤ = Τ . Clearly if Au 0= , then A y . 

Conversely, 

0u⋅ =Τ

Au≠ 0 , let y Au= , then , and so 0Au⋅ ≠A y u⋅ yΤ ΤAu Au= = u  for v⊥
v A AΤ= u  and v ∈ ( )AΤC . So  (and hence ) has been proven. Switching 

perspectives, v ∈ ( )AN  if and only if Av 0= , so if , then u A , and so (u AΤ∈C ) yΤ=

( ) 0u v A y v y Av y 0Τ Τ Τ⋅ = ⋅ = = = . 

Conversely, suppose (u AΤ∈ C ) +. Then we know that , in other 

words, there is a pivot in the last column the reduced form of (
( ) ( ) 1A u Ar rΤ Τ=

)A uΤ . Let P be the 

reducing matrix for ( )A uΤ . Thus, without loss, we can assume that the last row of PA  

is all zeroes while the last row of Pu . So if we let , then 

Τ

1= ( )0 0 1= "y yPAΤ 0=  

but . Let then 1yPu= v P yΤ Τ= , then v ∈ ( )AN  and 1v u=⋅ , so we are done.   
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Example 11. Let . It reduces to   as we saw 

before. Thus, a transparent set for 

1 3 2 4 1
2 6 1 5 4
3 9 3 9 3
4 12 4 12 4

A
−
−
−

     =       

( )

1 3 0 2 3
0 0 1 1 2
0 0 0 0 0
0 0 0 0 0

−       

AΤC  consists of   and  . We saw before that  

1
3
0
2
3−

          

0
0
1
1
2

          
3

1
0
0
0

−             

,  and   is a transparent spanning set for 

2
0
1

1
0

−

−

             

3
0
2

0
1

−

          

( )AN . We readily observe that any 

vector of the first set is perpendicular to any vector of the second set. 
 

Similarly the transpose reduces to 

4
3
4
3

1 0 1
0 1 1
0 0 0 0
0 0 0 0
0 0 0 0

           

 . Thus a transparent spanning set for ( )AC  

is 
4
3

1
0
1

       

  and 
4
3

0
1
1

       

  while a transparent set for the null space is given by   and 

1
1

1
0

−
−
       

4
3
4

3

0
1

−

−

 

 



 , and 

we can just as readily observe the orthogonality. 
 
When two subspaces V and W are related as the ones in the previous theorems, namely 
the vectors in one of them are exactly the vectors perpendicular to each vector of the 
other, they are known as orthogonal complements. One can indicate this by V W  
and W V . 

⊥ =
⊥ =

 
Thus with any  matrix A we have two pairs of orthogonal complement subspaces, 
one pair, 

m n×
)(AC and ( )AΤN  in  and m\ ( )AΤC  and ( )AN  in \ . Since the columns of n

AΤ  are the rows of A, one also refers to ( )AΤC  as the row space of A, and is denoted by 

( )AR . Then the orthogonality of ( )AR  and ( )AN  is clear—every row is necessarily 
orthogonal to anything in the null space by simple matrix multiplication.  
 
Also since every vector ( )AΤN  satisfies (by transposing), y A 0Τ =

)
, we can also refer to 

it as the left null space of A, and it can be denoted by (AL . 
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Thus we have 
( )A ⊥ =C ( )AL  and ( )A ⊥ =L ( )AC , 

and  
( )A ⊥ =N ( )AR  and ( )A ⊥ =R ( )AN . 

 
We will further clarify and fine-tune these ideas in the next section. 
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 The Notion of Dimension 
 
In this section, we discuss one of the fundamental parameters of a vector space, the 
notion of dimension.  
 
Recall that a collection of vectors V  (of any given fixed size) is a vector space (or 
subspace, for most of our purposes) if the following three requirements are met: 
 

 0 is in V; 
 if u and v are in V, then so is u v+  (closure under addition); 
 if u is in V, then so is a  where a is an arbitrary scalar (closure under 

scalar multiplication). 
u

 
We have already associated four subspaces with any given matrix.  
 
However, since every matrix can be thought of as a very tall vector (by stacking its 
columns vertically), we can also discuss vector spaces of matrices. We look at several 
examples of these at present. 
 
Example 1. The Space of Symmetric Matrices. Consider the set V of all symmetric 
matrices of size n. Thus an  matrix A is in V if and only if n n× A AΤ = . Certainly 

 is symmetric. Also by the transpose of a sum is the sum of the transposes, so we 
get the sum of two symmetric matrices is symmetric, ( )
0Τ = 0

A B AΤ Τ+B A
Τ+ = = +B . 

Similarly, a scalar multiple of a symmetric matrix is also symmetric: ( )A A AΤ= =a aΤ a , 
and so we can consider the set of symmetric matrices of size n as a subspace of the space 
of all square matrices of size n.  
 
Example 2. The Space of Skew-Symmetric Matrices. A square matrix A is called 

skew-symmetric if it satisfies A AΤ =− . For example, 0 1
1 0−

 

( )


 is such a matrix. Easily, 

if we let W be the set of all skew-symmetric matrices of size n, then 0 , and if 
, then ( )

W∈
,A B W∈ A B A A B

Τ+ = +− =−BΤ Τ+ =− A B+ , and easily ( )A Aa a=−Τ . 
So we have another vector space of matrices. 

 

 
The following is more unusual: 
Example 3. The Powers of a Matrix. Let A be an  matrix. Consider the span of its 
powers starting with I , namely consider the vector space 

n n×
0A= A = 2 3, , , ,I A A A   … . 

Clearly, an  matrix B is in n n× A  exactly when there exists a polynomial ( )p x  such 

that ( )A B=p . Note that the set A is not only closed under addition and scalar 

multiplication, but also multiplication, since ( ) ( ) ( )A A Ap q = r  where . (r x) ( ) ( )p x q x=
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Specific examples, [ ] { }|I I Ia a= = ∈\ , and [ ] {, | ,J I J I Ja b a b= = + ∈\}  since 
2J Jn nn= . 

 
As it turns out with every vector space V one can associate a positive integer called the 
dimension of V, and denoted by . We proceed next on how to find the dimension 
of any vector space. 

dimV

 

Let us start with a previous example. Consider the matrix . We 

know of course that its five columns form a spanning set for 

1 3 2 4 1
2 6 1 5 4
3 9 3 9 3
4 12 4 12 4

A
−
−
−

     =       
( )AC , but at the same time 

there could be fewer columns that span that column space, or on the other hand we could 
add more columns and still have the same column space. In brief, there is no constancy 
in the number of vectors in a spanning set for a vector space.  
 

However since we know A reduces to  , we know that first and the third 

column form of A,   and   constitute a spanning set for 

1 3 0 2 3
0 0 1 1 2
0 0 0 0 0
0 0 0 0 0

−       
1
2
3
4

       

2
1
3
4

       

( )AC which is minimal, in the 

sense that one can not delete one of the two vectors and span the column space. At the 

same time we saw before that 
4
3

1
0
1

       

  and 
4
3

0
1
1

       

  was a transparent spanning set for ( )AC . 

Clearly, a transparent set is also minimal since one cannot get a column of the identity 
from the other columns—one cannot get 1 from 0’s. The key observation is that then 
both of these collections have the same number of vectors in them, in this case 2 vectors. 
Thus one says the dimension of ( )AC  is 2. Note the agreement with the geometric 
language as we referred to this column space as a plane before.  
 
So the critical idea is that of spanning sets that are minimal, and the notion of linear 
independence is helpful. The basic facts about linear independence is captured in the 
following: 
 

Theorem (Linear Independence). Let u , u , 1 2 …, u  be vectors of size 
m, and let 

n

( 1 2 )A u u ut= " . Then the following are equivalent: 
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 Statement about the Vectors Statement about the 
Matrix 

 u1 ≠ 0  and for each , 2, ,i n= … [ ]u u ui ∉ −1 , ,… i 1 . Every column of A is 
pivotal. 

 
There exists an invertible matrix P such that , 

,…,Pu  is transparent. 
1Pu

2Pu n

A is of full column rank, 
 ( )Ar n=

 
Whenever , we must 
have a a . 

1 1 2 2u u un na a a+ + + ="

1 2 0na= = = ="
0 If Au 0=

( )
, then u 0 , 

i.e., 
=

A 0=N . 

 
For any scalars, if  

1 1 2 2 1 1 2 2u u u u un n n na a a b b b+ + + = + + +" " u

2

,  
we must have , , …, . 1 1a b= 2a b= n na b=

If Au Av= , then u v  =

 
There exists an invertible matrix P whose first n 
columns are , , u1 u2 …, . un

There exists a matrix B 
such that ( )A B  is 
invertible 

 
Proof. Since the two statements in each row are basically just restatements of each other, 
the equivalence across each row should be clear. The equivalence of  and  is clear 
from the matrix point of view, and so is the equivalence of  and . Assume  and let 
Au Av= . But then ( )A u v 0− = , and so u v , and  follows. Conversely if  
holds and 

0− =
Au 0= A0 u== , so , and  is done. Easily if  holds, then every column 

in 
0

( )A B  is pivotal, so every column in A is also. Conversely assume , then we may 

assume PA , so P  is an invertible matrix whose first n columns are A.  
I

0
n =    

1−

 
 
Let , , u1 u2 …,  be vectors of size m satisfying the conditions of the theorem. Then 
they are called linearly independent. Note that always  if this is the case. 

un

n m≤
 
It is logically consistent to refer to the empty collection of vectors as linearly 
independent. Note that if u , u , 1 2 …,  are linearly independent, then un

none of them is in the span of the others, 
and although this seems stronger than , it is logically equivalent to it. 
 
We exemplify . 

Example 4. Consider the following 3 elements of : 5\ w =

2
1
1
3
1

             

, v =

4
5
5
2

5

−

−

             

 and . u=

1
2
2
2
2

             
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Then in order to find the reducing matrix P, we reduce  , and 

obtain 

2 4 1 1 0 0 0 0
1 5 2 0 1 0 0 0
1 5 2 0 0 1 0 0
3 2 2 0 0 0 1 0
1 5 2 0 0 0 0 1

−

−

          
2.8 0 0 2.6 1.2
0.8 0 0 0.6 0.2

3.4 0 0 2.8 1.6
0 1 0 0 1
0 0 1 0 1

P

                    

− −
− −

−
−
−

=

1−

2 4 1 0
1 5 2 1
1 5 2 0
3 2 2 0 0
1 5 2 0 0

−

−

= 

dimV

1 2

. Thus P w , and so P  is the desired 

matrix. Indeed P . 

( v u =) 3I

0

     
1−

0
0
1

  

ut

dimV

1 2

dim
… ut

u2

1

ut

dimV= 1

dimt V≤
ut

1 2 ut u1 u2 ut

V dimV=dim≥
u1 u2 ut

dim dimW V≤

 
 
And we are ready for a fundamental concept. Let V be a vector space. A linearly 
independent spanning subset of V is called a basis. The main fact about bases is 
contained in the fundamental theorem whose proof can be found in the Appendix of 
Proofs. 
 

Theorem (Basis). Let V be a vector space. Then V has a basis. 
Furthermore, any two bases of V have the same number of elements. 

 
 
The size of any basis for V then is a well-defined number and is known as the dimension 
of V and is denoted by . As an important and useful corollary to the theorem we 
obtain: 
 

Corollary (Dimension). Let V be a vector space with a nonzero vector. 
Let u , u , …,  be elements of V. Then the following are true: 

  is a positive integer. 
 Any basis of V has  elements. V
 If u , u , ,  is a linearly independent subset of V, then u , 

, …,  can be extended to a basis of V. Hence  and 
if t , then u , , u2 …,  is a basis. 

 If u , u , …,  is a spanning set for V, then , , …,  can 
be reduced to a basis of V. Hence t  and if t , then 

, , …,  is a basis. 
 If W is a subspace of V, then , and if 

, then W V . dim dimW = V =
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Proof. Both  and  are trivial consequences of the theorem. For , let u , u , 1 2 …,  
be a linearly independent subset of V and let 

ut

1v , 2v , …, vn  be a basis for V. Moreover, 
let W be the span of , , u1 u2 …, . If each v is in W, then W , and , , ut V= u1 u2 …,  
is also a spanning set, and we are done. If it is not the case that each v is in W, then let 

, where 

ut

1ut+ = v i v i  is the first v that is not in W. Then the set u , u , 1 2 …, u , u  is still 
linearly independent, and their span contains one more v than before. If all the v’s are 
contained in the span of u , , 

t 1t+

1 u2 …, , , then we are done again. If not repeat the 
process we just went through, and eventually we will have a basis for V containing the set 

, , 

ut 1ut+

u1 u2 …, u . For the last claim of , note that the only way we do not get a  is for 
the u’s to be a spanning set already, namely a basis. On to , let u , , 

t 1ut+

1 u2 …,  be a 
spanning set for V. If they are linearly independent, we are done. If not, let u  be the first 
u such that u u , and drop it from the collection. Now we still have a 
spanning set , but with fewer elements. If the smaller collection is linearly independent, 
we are done. If not repeat the process. Eventually, we will arrive at a spanning set that is 
also linearly independent—namely a basis. The last remark of  follows easily, and  is 
a trivial consequence of .   

ut

i

[ 1, ,i … ]1iu −∈

 
 
Example 5. Consider the space of all vectors of size m, , then the columns of the 
identity are referred to as the standard basis for . Clearly it has m elements, so the 
dimension of  is m, . One usually denotes these vectors by , ,….  

m\
m\

m\ dim m m=\ ξ1 ξ2

 
Similarly, if we consider the space of all m n×  matrices, then the members of its standard 
basis are usually denoted by E , which is the matrix with 0’s everywhere except in the 

position, where there is a 1. For example , , then E . 

Therefore, the dimension is . This is not surprising since one can always think of an 
 matrix as a tall mn  vector. 

ij

mn

,i j−

m ×

3m= 4n= 23 =
0 0 0 0
0 0 1 0
0 0 0 0

       

n
 

Example 6. Consider the vectors in  that are perpendicular to the vector 3\
1
1
1

    

 . This is 

tantamount to the solutions of a b c+ + = 0 . Then easily 
1

0
1

−    

  and 
0
1

1
−
    

  constitute a basis, 

so the dimension of this space is 2.  
 
Now we revisit some of the examples ate the beginning of this section: 
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Example 7. Symmetric Matrices. We saw before that the collection of symmetric 
matrices of size n is a subspace of the space of all square matrices of size n, which has 
dimension . What is the dimension then of the space of symmetric matrices? Let us 

consider the  symmetric matrices—it is easy to check 
 

2n

2

0 1



2×

0 0 0

0 0 0

 

 

1 0
0 0

 
, 


 and 


 form 

a basis, so it is 3-dimensional. For the case , an arbitrary symmetric case is 

, so we can see that a basis will consist of 6 elements: 

0 1
1 0



1 0
0



0 0
0 1



0 1
1 0


3n=
a b c
b d e
c e f

       
0 0 1
0 0 0
1 0 0

       

0
0 0

0 0 0

  

 , , 

, 

0
0

0 0 0

  

( )
0


 , 
0 0 0
0 0 1
0 1 0

    

  and 
0 0 0
0 0 0
0 0 1

    

 . For arbitrary n, the dimension is 
1

2

n n+
. 








 
The following is even more unusual: 
Example 8. The Powers of a Matrix. We saw before that if A is an n  matrix, then 
the span of its powers starting with , 

n×
0I A= A = 2 3, , , ,I A A A   …  is a vector space. What 

is the dimension of this vector space? Certainly we know it is at most  since that is the 
dimension of the space of all n  matrices. Actually, we will see below that it is at most 
n, but in many cases is much lower than that. We look at several examples. 

2n
n×

 
First, [ ]I = I , which is clearly of dimension 1. Second, [ , ]J I Jn = n  since 2J Jn n= n

I

, so it 
is of dimension 2.  
 

Let C . Then , and , so 
0 1 0
0 0 1
1 0 0

   =     

2
0 0 1
1 0 0
0 1 0

C
   =     

3C = 2, ,C I C C =    , of dimension 3. 

 

Let now 10

10

0 J
A

J 0

  =    
. Then 102

10

10

10

J 0
A

0 J

  =    
 and 3 100A A= , so 3 2, ,A I A A∈ 

 , and 

thus, 4 2, , , 3 , , 2A I A A A ∈ =   I A A
 , and so on, so the dimension of A =3 in this case.  

 
Before we enter the main topic of the dimensions of the spaces of a matrix, we do one 
more matrix example. 
 
Example 9. Consider all  3 3× A ’s that commute with 3J , namely, all A ’s such that 

3 3AJ J= A . It is easy to show that this a subspace of the space of all  matrices, which 

as we saw has dimension 9. If 

3 3×

A =
a b c
d e f
g h i

  


 is such a matrix, then  
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3AJ =
a b c a b c a b c
d e f d e f d e f
g h i g h i g h i

+ + + + + +
+ + + + + +
+ + + + + +

       
 

while 3J A=
a d g b e h c f i
a d g b e h c f i
a d g b e h c f i

+ + + + + +
+ + + + + +
+ + + + + +

       
, therefore we have equality exactly when  

a b c d e f g h i+ + = + + = + + = a d g b e h c f+ + = + + = + + i . 
So the row sums and column sums are all equal. But then if we solve this system by using 
the free variables a, b, d, e and r (where r denotes an arbitrary row or column sum), we 

get A =
a b r a b
d e r d e

r a d r b e a b d e r

− −
− −

− − − − + + + −

       
, so a basis for this space is given by 

1 0 1
0 0 0
1 0 1

−

−

       
, 

0 1 1
0 0 0
0 1 1

−

−

    

 , 
0 0 0
1 0 1
1 0 1

−
−

    

 , 
0 0 0
0 1 1
0 1 1

−
−

    

  and 
0 0 1
0 0 1
1 1 1−

    

 . 

And we have the dimension of this space is 5. Note that the first four matrices constitute a 
basis for the space of matrices that satisfy 3 3AJ J A= = 0 . 
 
 
As aforementioned for the remainder of this section we consider an  matrix m n× A  and 
the four spaces associated with it: ( )AC , ( )AN , ( )AR  and ( )AL , and pursue their 
dimensions. We need to understand how these spaces are related to the reduced form of 
A, and the following begins to address this issue. 
 
 

Theorem (Row and Null Spaces). Let A  be m n× , and let M be its 
reduced form. Then the nonzero rows of M form a transparent basis for 
( )AR . Thus,  is of dimension ( )A =R ( )MR ( )Ar . Naturally, 

, and a transparent basis is obtained by solving the system 

. Thus, dim
( )AN

Mx=

=

0

( )MN

( ) ( )A An r= −N . 

Proof. It suffices to show that if P is an invertible matrix, then ( )PA =R ( )AR  and 

( )PA =N ( )AN . But since the relation is symmetric, , it suffices to show 
containment of one side into the other. For a vector to be in the row space of A, it needs to 
be a liner combination of its rows, or equivalently it needs to be a linear combination of 
the columns of 

( )1P PA− = A

AΤ , that is of the form A yΤ . But  

( ) ( ) ( )( ) ( )1 1
A y A P P y PA P y PA w

− −Τ ΤΤ Τ Τ Τ Τ= = = , 

so ( )A y PΤ ∈ R A , and thus by the symmetry, ( )PA =R ( )AR . Let . Then ( )u∈ N A

Au 0= u. So PA , so u . Astute readers may recognize this as a 
restatement that two row equivalent systems have the same solutions. Once we have 

P0 0= = (P∈ N )A
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established that ( )PA =R ( )AR  and ( )PA =N ( )AN , then since we know there is an 

invertible matrix P such that PA , we have that  and . 
The rest of the claims are obvious from these: the nonzero rows of M are clearly 
transparent by the reduced form and since all the others are 0, they form a transparent 
basis for N . We have already observed the claims about the null space.   

M= ( )A =R ( )MR ( )A =N ( )MN

( )M

A =


1 1 0
2 6 4
2 5 3

1
2
1

  

− 1 2
1 1
0 0

  

− −
M



=

1uΤ = ( )1−

12 6uΤ= +

2−

2uΤ

( 1 1

( )3 1

)1

12 5u uΤ= +
1 2u uΤ Τ+1 1 0 1− = 2 6 4

2
Τ

Ax 0=

x

x
y
z
w

= 

  

( )MN

2w y z=− −w

2z w
z w

z
w

+
− −
  

x
= 

2
1

0
1

−
       

1 2
1 1

1 0
0 1

− −
                       

z w+

 

 

(
1
1

1
0

−
       

( )MN )AN

( ) 2 ( )Ar

0
1

A
= 

= = 2 2+ =

0
0
 ( ) 0

1

   =     

( ) 0
1

   =    

 
The dimension of the null space of A is called the nullity of A. 
 

Example 10. Let  which has reduced form . Then 

we can see every row of A is in the span of the two vectors 

1 0
0 1
0 0

1 0

( )2

 and 

. In fact, because of their transparency, every row is easily written as a 

linear combination of them: ( ) , , and 

. Also we can observe that the two null spaces are the same, 
but it is much easier to tell the null space of M than that of A. Of course since we are 
solving the homogeneous system 

2uΤ =

2 5

0

, this last remark is obvious—reducing is the 

way to solve systems. Namely when does a vector  belong to , when 

x z= +  and , that is when , which means , 

so we have that the two vectors   and   span , and hence 

x=

. Note that 

dim AR  and also its nullity is 2. Note that , the number of 
columns of A. Observe also the mutual orthogonality of the two spaces. 

4

 
However, as the following very simple example illustrates, the column space of a 
matrix does change as one reduces it. 
 

Example 11. Let . Then it is clear that its column space is , which 

is also known as the y-axis in more familiar terms. Its null space is , the y-

AC

A
 

N
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axis also. Finally, its row space is the x-axis, ( ) 1
0

A
   =     

R

1 0
0 0
 =   

, which is spanned by the 

second row of A since the first row is all 0’s. Note as observed before, anything in the 
null space is perpendicular to anything in the row space.  

A

( ) (A Ar=C
Τ

( )AΤN

1 0
0 1 1
0 0 0



=

( )AC

 

What is the reduced form of A? Trivially, it is M . Note that of course, the row 

space is still the x-axis, but now the row is the first row, so we could not go back to the 
first row of the original matrix because that would gives us just the zero vector. The null 
space has of course not changed either. But look at the column space now—it is the x-
axis, not the y-axis, it has changed. 
 
 

Theorem (Column and Left Null Spaces). Let  be m n× , and let M be 
its reduced form. Then the columns of A that occupy the pivotal positions 
in M form a basis for ( )AC . Thus, )dim . Equivalently, the 

nonzero rows of the reduced form of A  form a transparent basis for 
( )AC . The dimension of ( )AL , the left null space, is ( )Am r− . 

Proof. By the Nonpivotal Column Lemma, we know the relations between the columns 
of A are exactly the same as the relations between the columns of M. In the reduced 
matrix, it is clear that the pivotal columns form a transparent basis, so the pivotal 
columns of A must also be a basis (although it is not transparent). But we also know that 
the nonzero rows of the reduced form of AΤ  form a transparent basis for ( )AΤR , which 

is the same as ( )AC . Since ( )AL  is the same as , the last remark follows from the 
previous theorem.  
 

Example 12. As before A =

1
2
2

  

1 1 0 1
2 6 4 2
2 5 3 1

           

−

1
6
5

      

 and M . So we know that the 

first two columns of A,  and 

1 2
1
0

  

− −



  form a basis for  since these columns are in the 

pivotal positions of M. And just like in the Nonpivotal Column Lemma, since the third 

column of M  equals the second column minus the first columns, the 

same is true of 

1 0
0 1
0 0



=
1

1 1
0 0

 

 

− −2

A =


1 1
2 6
2 5

0
4
3

1
2
1

  

−
. Similarly, the fourth column of M is the second minus 

twice the first, so the same is true in A. But in another approach, consider 


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AΤ =

1 2 2
1 6 5
0 4 3
1 2 1−

           

 and its reduced form 

1
2
3
4

1 0
0 1
0 0 0
0 0 0

       

 . So 1w =
1
2

1
0
       

 and 2w =
3
4

0
1
       

 form a 

transparent basis for ( )AC . Indeed, 1 2

1
2
2

2w w
  = +  

 , 1 2

1
6
5

6w w= +
       

, 2

0
4
3

4w
       
=  and 

1 2 2

1
2
1

w w− +
−   =    

. Finally, we have dim ( ) 2 ( )A Ar= =C . On the other hand, the left 

nullity of A is 1 with 
1

2
3

4

1

−

−

  



  being a basis for ( )AL

3

. Note that just as easily we could have 

taken 
2
3
4−

    
(

  as the basis. Note , the number of rows of A, and as observed before 

everything in 

2 1+ =

)AL  is orthogonal to everything in ( )AC  

A m n× ( ) ( )A Ar Τr =

( ) ( ) ( )dim ( )dimA A Ar = =C R ArΤ Τ=

A n× n× p
( ) ( )ABr ≤ Ar ( ) ( )AB B≤

( )AB u A Bu ( )ABC ( )AC

( ) ( )ABr ≤

(
Ar

) ( )( ) ( )( )AB Ar r Τ
B Br Τ Τ

A
= 

A r≤

1 2
3 4
5 6

  

B Br=

AΤ=

Τ= =

5 11 1
25 39
39 61

7  
11
17

Τ = = 
AB AA

A m n× ( )Ar k≥

 
 
We arrive at a very interesting and unexpected fact already exemplified above 
 

Corollary (Rank of Transpose). Let  be . Then . 

Proof. It is easy since .   
 
 

Corollary. (Rank of a Product). Let  be m  and B  be . Then  
 and r r . 

Proof. Since ( ) = , we have that  is contained in , and therefore it 

has smaller dimension. Thus, . To prove the other inequality, we have that 

( ) .  

 

Example 13. Consider  and B . Then , which 

can have rank at most 2, and indeed in this case it is 2.  
 

Corollary. (Rank & Submatrices). Let  be . Then  if 
and only if there is a  invertible submatrix of A.  k k×
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Proof. Suppose , then A has k linearly independent rows. Let B consists of those 
rows, so B is  of full row rank. Then B has to have k linearly independent columns. 
Let C be the submatrix of B consisting of those columns. Then C is  of rank k, and 
hence invertible. The converse is trivial since the submatrix already has rank k.  

( )Ar ≥
k n×

k

k k×

 

Example 14. Let . Then 5 2 , so the rank is at least 2. 
5 11 17

11 25 39
17 39 61

A
   =     

25 11 0⋅ − ≠

 
 

Corollary. (Spaces and Matrices). Let V be a vector space. Then there 
exist matrices A , B, C and D such that ( ) ( ) ( ) ( )A B C= = = =C R N L DV .  

Proof. Let 1v , 2v , …, vn  be a basis for V. Let ( 1 2 )A v v vn= " . Let B . Let AΤ=

1w , 2w , …, wm  be a basis for ( )BN . Let 

1

2

w

w

w

C

=  n

Τ

Τ

Τ

  
#

CΤ=. Finally, let D .   

 
 

Example 15. Let V be the span of the vectors  ,  and  , so we could take A to 

be the matrix with these three columns, but as it turns out they are not independent, so a 

more efficient A is . Now B , which reduces to 
 

5
11
17
23
29

          

11
25
39
53
67

             

17
39
61
83

105

          

5 11
11 25
17 39
23 53
29 67

A

      =        

AΤ= 1 0 1 2 3
0 1 2 3 4

− − −  
 so a 

basis for ( )BN  is  ,   and  . So C .  

1
2

1
0
0

−
          

2
3

0
1
0

−
          

3
4

0
0
1

−
          

1 2
2 3

−
−
−

1 0
0 1

4 0 0

0
0
1

  3


=


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 Matrices as Transformations 
 
In this section we look at how the nature of a matrix is reflected when we view it as a 
transformation—actually what is known as a linear transformation.  
 

For example, consider , then define a function  simply by 

, explicitly 

1 2
3 4
5 6

A
   =     

2

3 4

5 6

2:Af →\ \3

uu A6
x y

x
x y

y
x y

+

+

+

        
6

n\

  
 . In general, if A is an  matrix, then we think of 

it as a transformation from  into  by simple multiplication—namely, if u , 
then . In functional notation, , . It is clear that the 
following two properties are satisfied by this transformation: 

m×

Af

n

( )u Au=

m\ n∈\
u Au m∈6 \ :A

n mf →\ \

( )A u vf + = ( )A u v Au Av+ = +  the image of a sum is the sum of the images 
and 

( )A uf a = ( )A u Aa a= u

n

  image of a multiple is the multiple of the image. 
 
A function that satisfies these properties is called a linear transformation, since they 
take lines to lines among other things. The connection between linear transformations and 
matrices is intimate indeed. In fact, composition of functions corresponds to matrix 
multiplication: 
 

Theorem (Composition). Let A be , B be , so  
and . Then their composition  is nothing 
but matrix multiplication, 

m n×

AB

n p×
:A Bf fD \

:A
n mf →\ \

m\:B
pf →\ \ p →

A Bf f f=D . 
Proof. It is trivial: .  ( ) ( ) ( )A B A ABu Bu ABuf f f f= = =D u

)

 

Example 1. Let  and let B . So BA . Now 
1 2
3 4
5 6

A
   =     

( )2 5 8= (57 72=

2

3 4

5 6

Af
x y

x
x y

y
x y

+

+

+

             
6  while ( )2 5 8y+ +

Bf
x

y x

z

     
6 , and ( )7257

B Af fx
x y+

y

  

D

6 . z
 

 
In general, when discussing multidimensional transformations, it is hard to visualize what 
they are actually doing. So, as usual we will look in the lower dimensional situations first. 
But first two general examples.  
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Example 2. The simplest example one can think of is to use A 0= . In that case every 
vector gets mapped to the zero vector, u  or . This is the zero function, 
and, of course, by choosing the size of the zero matrix appropriately, one can map vectors 
of any given size, to the zero vector of a chosen size. 

0 06 ( )0 uf =

 
Example 3. Another simple example is to choose A I= . Then every vector gets mapped 
to itself, u , it is the identity function.  u6
 
Now, let A = 2I . This is an example of a 
dilatation. The geometric action is 
simple, every vector is doubled, is 
multiplied by 2.  

 
In contrast, the case A = 2I−  is more 
interesting since it also rotates vectors by 

.  180
 

More concretely, if A = I−  in 3-space, then we have an antipodal 
map that maps every point of a sphere centered at the origin to its 
antipodal point:  
 
These two examples are easily observed in any dimension, but the 
next few examples are restricted to the plane—and then we will 
have a few in 3-space. 
 
One of the crucial facts about linear transformations is that they are easily understood 
once one understands what is happening to the axes.  
 

For example, in , since 1
0

0
1

A A A
a
b

a b
       = +         

0
1


1
0
  

1
1
  

   , once we understand what geometrically 

is happening to 


 and 


, we know what is happening to all vectors. One way to 

visualize this is to see what is happening to the unit box, that is in the case of the plane, 

the square with corners at the origin, ,  and 0
1
  

 in that order to be able 

to detect orientation changes. For example, for the transformation A = 2I , 
becomes                 , and the area has quadrupled.  

2\

1
0


 
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Example 4. Let A =
1

2

1 3

3 1

−     
. This is a rotation by 60  about the 

origin (counterclockwise, of course). Similarly, 

A 2 =
1 1

2 3 1

− −

−

     
3  represents a 120  rotation. 

 

In general, if =A
cos sin
sin cos

θ − θ
θ

    θ 
, then Af  is the rotation by 

angle θ ,  and 1
0 s

   
6 cos

in
θ
θ
   

 
 
6

 
 

0 s
1 c

−


in
os

θ
θ
   
. 

Thus, A =
1 2

2 2 2

−     
2  represents a -

rotation. 

1

1
2

θ
2

   

45

 

Example 5. Let A =
1

3 1

−     
3 . This is the composition of 

the previous two examples, thus it rotates as it doubles.  
 
 
The following does reverse the orientation. 
 

Example 6. Let A = 0
1 0


1  
. Geometrically what is 

occurring is the reflection on the y =  line. Note that 

its determinant is −1. The action is given by 
 
b a     
6 .  

x
a b     

 
 

Example 7. Let A = 1
0

0 0
  

. Everything is mapped to the x-axis: 

0
x x
y

         
6  . It is called a projection, this particular example being the 

projection onto the x-axis. 
 
 

Example 8. Let A = 1 2
0 1
    

. This is an example of a shear—it 

maps the square to a parallelogram of the same area.  
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Now we will discuss some transformation of 3-space. As it turns out, these 
transformations are far richer than those in the plane.  
 
Example 9. Reflection on a Plane. Let  be a unit vector. 
Consider the matrix 

u
2A I u= − uΤ . Then A , A is 

symmetric, and  
A= Τ

2 4 4uu uu IΤ Τ Τ+ = , A I uu= −
since . What does the transformation 1u uΤ = x Ax6  do? 
Easily, Au=−

Τ
u . Consider any vector v perpendicular to u, 

then since u v , we have 0= Av= v . Thus the plane of 
vector perpendicular to  is a plane of fixed points. u
 

If p is any other point, then p v , and so (( )p Av Ap v
ΤΤ Τ= = )Ap p−  is orthogonal to the 

plane. We recognize here the reflection on the plane with normal u. Reflections in 
space, as was the case in the plane, have determinant −1. Below we will see a different 
way of computing reflections in any space.  
 

For example, if we let , so it is orthogonal to the x-y plane. Then u=
0
0
1

       

1 0 0
0 1 0
0 0 1−

    

  is the 

reflection on that plane.  
 
Note that the size of the vector is immaterial, and indeed the expression 2A I uuΤ= −  
will always represent the reflection on the hyperplane orthogonal to u. 
 
 
Example 10. If we wanted to find the reflection on the plane 2 3 6 0x y z+ + = , we need 

a unit normal to that plane. One such vector is u=
2

1
3

7 6

       
, and so 

41 12
1

12 31
49 24 36− −



24
36
23

− −
− −

−

  
 is 

the reflection matrix. 
 
 
Example 11. Suppose that u and v are unit vectors, not 
parallel, i.e., not equivalent directions. When we multiply (or 
compose) their respective reflections, we get 

. This matrix will have 
determinant 1, so it will not be a reflection. Since the cross 
product  is orthogonal to both vectors, it will be a fixed 
point of both transformations and hence of their composition.  

( )2 2 4I uu vv u v uvΤ Τ− − + ⋅

u v×

Τ

 
Hence we have a line of fixed points: [ ]u v× . What happens to 
the plane perpendicular to that fixed line? This plane 

θ

θ

θ
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orthogonal to the fixed line has to be transformed into itself. As it turns it is a 
rotation of that plane where the angle of the rotation is twice the angle between the vector 
u and v. 
 
This is an example of a rotation in 3-space. They have an axis of rotation (of fixed 
points) and every other point moves in planes perpendicular to that axis of rotation by a 
rotation in that plane by a fixed angle. Thus a rotation has two parameters, the axis and 
the angle. 
 
Closely related to reflections (and very relevant to our course) is the notion of projection. 
 
Example 12. Projection on a Plane. Suppose we are given 
a plane in . Then the projection of a point to that plane is 
the point in the plane in which the original point lands when 
it is dropped perpendicularly to the plane. In other words, it 
is the intersection of the plane and the line between a point 
and its reflection. It is also the point on the closest to our 
original point. Below we will see how to compute 
projections. 

3\

 
The next example is more abstract: 
 
Example 13. (Polynomials & Derivatives) A polynomial is an expression of the form  

( )p x = 1 1
0 1 1

n n
n na a x a x a x−
−+ + + +"  

where . If , then 0 1 1, , , ,n na a a a− ∈… \ 0na ≠ ( )p x  is said to be of degree n. Easily if one 
adds two polynomials, one gets another polynomial, and the same is true if one multiplies 
by a scalar. Every polynomial of degree at most n can be thought of as a vector of size 

 by simply thinking of 1n+ ( )p x

1n+\

 as above to correspond to 
, and so we can think of 

all of these polynomials as being .  

0

1

n

a
a

a

         
#

 
 
Consider now all polynomials of degree at most 3, so we are considering elements of \ . 
Now we know that the derivative of a sum is the sum of the derivatives from 
calculus, we also know that the derivative of a constant times a function is the constant 
times the derivative of the function—in other words taking derivatives is a linear 
transformations. Since the derivative lowers the degree, we are considering a 
transformation from  to , so the matrix D that accomplishes this transformation 

4

4\ 3\
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should be a . What does it do to the vector  ? This will be the first column of D. 

But the vector represents the polynomial 1 which has derivative 0, so the first column is 

. Similarly, x is represented by  , so the second column of D is 

3 4×

1
0
0
0

       

0
0
0

       

0
1
0
0

       
0
2

0 0 3

1
0
0

    

 . Continuing in 

this fashion we see that D . 
0 1 0
0 0 0
0

   =     

4\

4 x+6

1 1
0 0

0 0
0 0

                              

M=

 
Example 14. (Polynomials again) Consider multiplication by the polynomial 1 2x+ . 
This is a linear transformation that will send our domain of polynomials of degree at most 
3 to polynomials of degree at most 5, so our transformation goes from  to , and the 

matrix should be 6 . Since 1 1

6\

× 2 , , and the matrix  is 

arrived at by considering what happens to x, 

0
0

 

   

 

6

2

1
0 1
1 0
0 1
0 0
0 0 0

0 0 0
0 0
1 0
0 1
1 0

1

  


x  and 3x .  

1
0


 
 
We can connect some of the notions about matrices with some common words about 
functions.  
 
A function is said to be one-to-one if it does not map two objects in the domain to the 
same object in the codomain. The last example was one-to-one because no two 
polynomials give the same product when multiplied by 1 2x+ .  
 
A function is said to be onto if every possible output in the codomain is an actual output 
from the domain. The derivative example is onto because every polynomial of degree at 
most two is the derivative of a polynomial of degree at most 3. 
 
If a function is both one-to-one and onto, then it is called a bijection (or one-to-one 
correspondence). 
 
The following theorem is a direct consequence of the Existence and Uniqueness of 
Solutions Facts proven before 
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Theorem (One-to-one and onto). Let A be an  matrix so 
. Then the following are true: 

m n×
:A

nf →\ \m

 Af  is one-to-one if and only if the columns of A are linearly 
independent, or equivalently, if A is of full column rank. 

 Af  is onto if and only if , or equivalently, if A is of full row 
rank. 

( )A m= \C

If , then the following four statements are equivalent: n m=
Af  is a bijection   Af  is one-to-one 

Af  is onto   A is invertible. 
 
 

Example 15. We saw M  was one-to-one while  was onto. 

On the other hand, M M  and  are both bijections. 

=

= 

1 0 0 0
0 1 0 0
1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

                 
2 0 1 0
0 2 0 1
1 0 2 0
0 1 0 2

  

0 1 0 0
0 0 2 0
0 0 0 3

D
   =     

Τ
1 0 0
0 4 0
0 0 9

DDΤ
   =     

 
 
For the remainder of the section we concentrate on projections. We all know the 
geometric fact that two points in the plane determine a unique line. From the linear 

algebraic point of view, this is a clear claim: if 1

1

x

y

  
 and 2

2

x

y

  
 are the two points, and 

without loss we assume that 1x x≠ , then we want an m and a b so that  and 
—in other words, we are looking for a solution to the system 

1 1y mx= +b
b2 2y mx= + Ax b=  where 

A= 1

2

1

1

x

x

    
,  and b . Since , we know the system has a 

unique solution.  

x
m

b

 =   
1

2

y

y

 =    1 2det A= − 0≠x x




2

 
But what happens if we have three or more points in the plane—in that case there may be 
a line or there may not be a line that goes through those points. If we are given the points 

1

1

x

y

    
, 2

2

x

y

    
, …, t

t

x

y

  
, then we need, as before, to find an m and a b so that , 

, …, . In other words, we need a solution to the system 

1 1y mx= +

2 2 +y mx= t ty mx= + Ax b=  

 b

b b
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where A=

1

2

1

1

1t

x

x

x

             
# #

,  and . Of course, we now run into the problem of 

whether there is a solution or not by equivalently asking whether b is in the column space 
of A or not. We know that the column space of A is a plane in , and the vector b may 
lie in that plane or it may not.  

x
m
b

 =   

1

2b

t

y

y

y

     =        
#

t\

Ax c=

c−

b c−

Ax− ⊥

c

) ( )b Az− =
2x

AΤ −

A Az

A AΤ

z A=

Az

m×

A AΤ n−
0 AxΤ 0= Ax

Ax ⊥ Ax A =

 
There is a problem in the latter case, and in that case, it has been a consistent assumption 
for over two centuries (and clearly justified for many applications) to put all the error in 
the vector b. In that case, the key idea is to take the 
vector c in the plane that is closest to the vector b, 
and solve the system .  
 
How do we find c then? Our geometric intuition 
indicates then the vector  should be 
perpendicular to the plane, and so it should be the 
case then that b  is perpendicular to  
(expressed by ) for any vector . 
But we want c to be in the column space of A, and so there must exist a z such that 

b c x ∈\

Az= . And so we arrive to the fact that for any , and for some ,  2∈\x 2z ∈\

b

0

c

Ax
2

( ( ) 0Ax x A b Az
Τ Τ Τ − = , 

and since this is true for all , we must have  ∈\
( )b Az 0= . 

and thus we know we should let z be a solution to  
A bΤ Τ= , 

and since the columns of A are linearly independent, the rank of A AΤ  is 2 (see Lemma 
below), and  is invertible, and thus 

( )-1A AΤ Τ  b

and since even more interesting than the vector c is the vector z, we are done. By the 
way, we can always find c by c . =
 

Lemma. For any  matrix A, the rank of n A AΤ  is the same as the rank 
of A. 

Proof. It suffices to show that they have the same null space because the rank of either 
matrix A or  is dimension of the null space, and so we would be done. Clearly, if 
Ax= , then A . But conversely, if A Ax 0Τ = , then ( ) , 
and so 

0Ax x A Ax
Τ Τ Τ= =

, and so x 0 .  
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Example 16. You are a young executive in a relatively young firm, and you are in 
charge of forecasting sales. At the end of the first but very prosperous year, the company 
sold $1.8 million, but during the second year when a lot of competition showed up, it sold 
only $400,000. However, good management and aggressive salesmanship helped the firm 
bounce back by matching the first year’s performance during the third year. Things got 
even better during the fourth year (the end of which is the present) when it sold a cool $2 
million. Your boss would like to know how likely is it that sales will increase next year 
and by how much. She wants to use a linear model. You adequately obey her and find the 
best fit line and use it to forecast sales for the fifth year. But you also discuss with her the 
limitations of using a linear model. 
 

Here what we want is to find a line that goes through the points 
 1
1.8

 
, ,  and 

. So we want an m and a b so that  is the line. In particular we want 

, ,  and . In other words, we are 

looking for a solution to the system 

2
0.4
    

3
1.8
   

4
2.0
   
1.8

y mx= +

b 2.0m b= + 0.4 2m b= + 1.8 3m= + 4m b= +

Ax b=  where ,  and . 

Using the reasoning from above we start with the equation 

1 1
2
3 1
4 1

A
= 

1
  

1.8
0.4
1.8
2.0

= 

b

  

x= m
b

    

Ax= b , and then multiply by 

AΤ , and so we consider the equation A Ax A bΤ Τ= . But  is invertible, and 30
10



10
4
A AΤ =





( ) 1
1
20

−
= 4 10

10 30
−

−
   

A AΤ 


, and since A bΤ = 16
6

    
, so we get ( )-1x A A AΤ Τb

= 
= 0.2

1


, and  








b

we use the line  as the best fit line to the data 
we have, and so when we let , we will get $2 
million for a prediction. 

.2 1y x= +
5=x

 
 

How 
comfortable are we with our prediction?  

Year 
Actual 
Values Prediction 

1 1.8 1.2 
2 0.4 1.4 
3 1.8 1.6 
4 2 1.8 

 
What we are saying is that the vector 

 is the vector in the column space 

of A that is closest (nearest) to the vector b , and so we are changing the vector b 

c=

1.2
1.4
1.6
1.8

           
1.8
0.4
1.8
2.0

     =       

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

Actual Values

Predicted
Values
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as little as we can and yet obtain a solution. The distance from b to c is 
.36 1 .04 .04 1.44 1.2+ + + = = . 

Ax b= A
= 

354 100 30
100 30 10
30 10 4

A AΤ
   =     

 
Of course, by looking at the shape of the original data, we could have speculated that a 
quadratic approximation was perhaps better suited for the prediction, so we should rather 
perhaps be considering an equation of the form . Then we need to solve 

the system 

2y ax bx c= + +

 where ,  and . When we compute 

, and so ( )

1 1 1
4 2 1
9 3 1

16 4 1

  

x=
a
b
c

       

1.8
0.4
1.8
2.0

b
= 

  

1 1
20A A

−Τ =
5 25 25

129 135
135 155

−
− −

−

  
25

25


, and since A bΤ =

51.6
16
6

       
, 

we get , and thus we would use 

the parabola  for our 
predictions, and then we would get a very 
striking $4 million for next year. 

x=
0.4
1.8
3

a
b
c

       
−
= 

=

  
.4y x2 −1.8 3x+ Actual

Val

0

0.5

1

1.5

2

2.5

0 1 2 3 4 5

ues
Predicted
Values

 
 
 
 
 
 
 

Year 
Actual 
Values Prediction 

1 1.8 1.6 
2 0.4 1.0 
3 1.8 1.2 
4 2 2.2 

Thus our reconsideration led to very different results. Again, one way to measure our 
uncertainty is to see how much change we have had in the vector b, which went from 

 to c , and their distance apart is 

1.8
0.4
1.8
2.0

b

     =       

1.6
1.0
1.2
2.2

     =       

0.8 .89≈ , a smaller change.  

 
Of course, we can only push this idea so far. If we got to the cubic (the next case up), we 
would have that now the matrix is invertible, so b would not need to change at all, and we 
would be claiming that we have an exact procedure of prediction, which is highly 
unlikely. Just for thoroughness sake, the cubic would be 3 2 1942

3 155.4 10x x x+ − +− , and 
the model is so silly that it would predict negative sales of $3 million in year 5. 
Now that we have finished this very long example, the time has come to put a theoretical 
framework around it. 
 
The key theorem is the following:  
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Theorem (Projections). Let V be a subspace of . Then there exists a 
unique matrix Q that satisfies the following: 

m\

     2Q Q= QΤ =Q
 for any u, Qu , thus C . V∈ ( )Q V=

Moreover, for every , , and for every , 
.  

u m∈\ ( )u Qu Q− ∈ N v V∈
Qv v=

Proof. Let 1v , 2v , …, v t  be a basis of V, and let A be the matrix whose columns are the 
v’s. Then since its columns are linearly independent, A has rank t, and so A AΤ  (by the 
lemma above) is invertible since it has rank t and is of size t . Also since the columns 
of A span V, we have that , so for any , , and, vice versa, if 

, then 

t×
Au( )A V=C u m∈\ V∈

v V∈ v Au

( )
=  for some u. Consider the  matrix . We have m×

( )
m

1

( ) 1
A A

−ΤQ A AΤ=
2Q QQ= = ( )1 1

A A A A AΤ Τ A A A
− −Τ Τ

( )

A A A=

( )

A Q
− ΤΤ = , and we have the first 

condition. Also ( ) ( )( ) 1

A A
Τ −ΤΤ=

1
A A

Τ −Τ=Q AΤ AΤ Τ A AΤ , but since ( )A A AΤ Τ= A
Τ

, 

we have . Let u , then , so  is contained in V. 
Conversely, let , then we know 

m

V∈
∈\ ( ) 1

A A
−

v

Qu A A uΤ Τ= = Ax V∈ (QC )
v Au=

u

QP=

 for some u, and then 

, so we have . Now Q  so we 
have the added comment. All that is left to prove is that Q is unique. But suppose P also 
works. Then we know that for any u,  since Pu . Thus QP , and this 
implies that  is symmetric, which implies PQ  (see exercises). For any , 
we have that 

( )A=
1
AΤ ΤQv A A A

−

QP

u u

QPu=

A v= = ( )Qu−

V∈

2u 0=

P=

Qu Q−=

Pu
v V∈

v Pu= , and so Pv , and so we get PQu , so , and 
we have equality.  

PPu= v= Q= u PQ=Q

 
 
Q is known as the projection along V. A matrix that satisfies the first property is called 
an idempotent matrix, while of course, a matrix that satisfies the second property is 
symmetric. Thus, projection matrices are symmetric idempotents. By the uniqueness 
in the theorem, it is clear that every symmetric idempotent is the projection along its 
column space. 

Example 17. Suppose V  where M . Then as we saw before the first 

two columns form a basis for V, and so we can let  in the construction above, 

and so the projection matrix 

( )M= C
1 2 3
4 5 6
7 8 9

   =     

A=
1 2
4 5
7 8

       
5 2

1
2

6 1 2−



1
2 2

5

−  
Q= . But also the first and the third column 
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form a basis, so we could have used . Due to the uniqueness of the projection 

(and an easy computation for the nonbelievers), 

1 3
4 6
7 9

B
   =     

( ) ( )1 1
A A A A Q B B B B

− −Τ Τ Τ= =

m\

Qx
Qx Qu=

( )( )Q u Qx uΤ Τ− − 2

Τ . 

m\ Qu

( )x u x= x Qx x QuΤ Τ= −

( )( )Q u Qu uΤ Τ− − 2u Qu u QuΤ Τ= −
Qu

( )u u u=

( )Qu Qx
Τ− −

[ ]

( )Qu = ( ) ( )Qx Qu Qx Qu− ⋅ − 0≥

v ( )A v= ( ) 1
Q A A A A

−Τ Τ= =

ta

 
The fundamental geometric property of projections is given in the following theorem: 
 

Theorem (Nearest Point). Let V be a subspace of , and let Q be its 
projection. Then for any ,  is the unique vector in V nearest to 
u.  

u∈

Proof. We need to show that for any x, the distance between  and u is at least as big as 
the distance between  and u with equality if and only if . We know that it 
suffices to prove the inequality for the square of the distances. But then the square of the 
former is given by 

Qu

( ) ( ) ( )Qx u Qx u Qx u Q
Τ− ⋅ − = − − u u+ Τ

Τ

 
while the square of the distance between  and u is given by 
( ) ( ) ( )Qu u Qu u Qu u Q

Τ− ⋅ − = − − u u+ , 
and subtracting the second from the first, we get  

2x Qx x Qu u QuΤ Τ Τ− + = Qx  
with equality if and only if Qx .  Qu=
 
It is this theorem that gives the method applied to examples at the beginning of the 
section its name—the method of least squares. 
 

Example 18. Suppose we let V . Then = , so 1
v v

vv
⋅

Τ , 

and so the nearest multiple of v to a given u is 

given by v u
Qu v

v v
⋅=
⋅

, which goes well with this 

picture on the right: 
Qu

u v u v

 

Of particular interest is when . This is the case, for example, when we have made 

a number of observations, say t, on an unknown quantity, and the system of equations is 

of the form 

1
1

1

v

     =       
#

1x a= , 2x a= , …, x= . But then we shall take the projection of u  

1

2

t

a

a

a

     =        
#
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along v, which is 1 2 vta a a

t

+ + +"



0
0
0
1

       

A AΤ = 

, the average of the observations. This is the nearest 

vector to u, not surprising, yet satisfying. 
 
 

Example 19. The Nearest Symmetric Matrix. As we saw in a previous section 1 0
0 0
  

, 

 and 0 1
1 0
   

0 0
0 1
 

0
1
1
0

       


, form a basis for the  symmetric matrices. If we would like to 

project along this space, we need to compute the projection matrix, and switching our 
point of view, we need to think of matrices as vectors, so there elements of the basis 

become  ,   and  , respectively. And then if we let A be the matrix with these as its 

columns, we have that , and so 

2 2×

1
0
0
0

       

1 0 0
0 2 0
0 0 1

  
( )

1 11
2 2
1 1
2 2

1 0 0
0
0 0
0 0 0

A A A
−Τ Τ

= = 

0
0

1

  

Q A , and 

thus the nearest symmetric matrix to 
 a b
c d

 
 is 2

2

b c

b c
a

d

+

+

   , common sense indeed.  








I



 
Example 20. Projections and Reflections. Given a subspace V we can think of the 
reflection on that subspace—namely the reflection would leave every point of the 
subspace alone while it would take every vector perpendicular to that subspace to its 
negative. This is the natural extension of the reflections in  previously discussed. Let 
then Q be the projection along V, and let R be the reflection on V. We can see that 
geometrically there is an intimate connection between the two transformations.  

3\

 
Observe first that if w is perpendicular to V, then w is perpendicular to every column of 
Q, but since Q is symmetric, we have that w is orthogonal to every row of Q, or 
equivalently, . Of course, we already know that  for every v in V. But 
then if we consider the matrix 2 , we can see that this transformation accomplishes 
the same effect as the reflection, and so R .  

Qw 0= Qv v=
Q I−

2Q= −
 

Specifically, suppose we consider the plane 2 3 6 0x y z+ + = . Then the vectors 
3

0
1

−    

  and 

 form a basis for the plane, so if we let , then  
0
2

1
−
       

3 0
0 2
1 1

A
−

−
   =     
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( ) 1
Q A A A A

−Τ Τ= =
45 6 12

1
6 40 18

49 12 18 13

− −
− −
− −

       
. 

And if we compute , we in fact obtain the previously computed 2Q I−

R=
41 12 24

1
12 31 36

49 24 36 23

− −
− −
− − −

       
. 

 
But at the same time we can use the reflection matrix to give us projections. For example 
if we wanted the projection onto the hyperplane given by the equation: 

2 3 4 5x y z w u+ + + + = 0 . 

Then since 

1
2
3
4
5

1
55

      =        

u  is a unit vector orthogonal to the hyperplane, we get the 

reflection on that hyperplane to be 

53 4 6 8 10
4 47 12 16 20

1
6 12 37 24 30

55 8 16 24 23 40
10 20 30 40 5

2uuΤ

− − − −
− − − −
− − − −
− − − −
− − − −

      = − =        

R I , and so 

the projection is ( )1
2Q R= + I . 
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�� Determinants & Adjoints 
 
We now return to the topic of determinants. Of course, we have seen before:  

det A a=  for the 1 1×  matrix ( )A a= , 

det A ad bc= −  for the 2 2×  matrix A
a b
c d

 =  
 

, 

det A aei bfg cdh ceg afh bdi= + + − − −  for the 3 3×  matrix A
a b c
d e f
g h i

 
 =
 
 

. 

And the time has come to consider the determinant of an n n×  matrix. But before we can 
do that we need to recall the connection between determinants and inverses. In fact what 
happened was that in each of these instances we found a matrix B such that  

( )detAB BA A I= = . 
 
Recalling the construction in the 3 3×  case, we went through three stages: 

1 Compute the matrix of subdeterminants where at each entry one places the 
determinant obtained from A by scratching out the given row and column; 

2 Change the sign of the odd positions, where the ,i j− position is odd if 
i j+  is odd; 

3 Transpose the matrix. 

Then starting with A =
a b c

d e f
g h i

 
 
 
 

, one gets B
ei fh ch bi bf ce

fg di ai cg cd af
dh eg bg ah ae bd

− − −

− − −
− − −

 
 =
 
 

. 

 
What we need to observe now is that if we had applied the construction to the 2 2×  

matrix A = a b
c d

 
 
 

, we would have obtained respectively, 
d c
b a

 
 
 

, 
d c
b a

− 
 − 

 and 

d b
c a

− 
 − 

. But this last matrix is exactly the matrix seen before that satisfies the critical 

equation ( )detAB BA A I= = . Even further, if one were to take the determinant of the 
empty matrix ( 0 0× ) to be 1, the constructions would also work in the 1 1×  case. 
 
Thus the matrix built by the three steps 1, 2 and 3 plays in role in both the definition of 
determinants and the construction of the inverse. Thus, it necessitates a name:  
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Let A be an n n×  matrix and suppose we already know how to compute the determinant 
of ( ) ( )1 1n n− × −  matrices. Then the matrix obtained from A by pursuing steps 1, 2 and 3 

above is called the classical adjoint of A, and we will use A%  to denote the adjoint1.  

Thus, 
²a b

c d
 
 
 

d b
c a

−
−

 =  
 

 for example. 

 
The fabulous theorem says it all: 
 

Theorem (Adjoints). Let A be an n n×  matrix. Then there is a scalar a 
such that  

° °AA AA Ia= = . 
 
One defines this scalar a to be the determinant of A, det A . Thus as a trivial consequence,  

° ° ( )detAA AA A I= = . 
 
Thus the determinant is defined recursively—one has to know how to compute 3 3× ’s to 
be able to compute 4 4× ’s, etcetera. Below we will see how to circumvent this necessity 
via another theorem. The proof of the Adjoint Theorem can be found in the Appendix of 
Proofs. 
 

Example 1. Consider A =

1 3 5 6
5 7 8 9
9 10 11 12
13 14 15 16

 
 
 
  
 

. Then the matrix obtained by taking the 

subdeterminants is 

0 4 8 4
4 8 4 0
7 4 29 25
3 0 21 17

− −
− −

 
 
 
  
 

, then changing the signs in the appropriate 

positions, we get 

0 4 8 4
4 8 4 0

7 4 29 25
3 0 21 17

− −
− −

− −
− −

 
 
 
  
 

, and finally by transposing, we get 

°A =
0 4 7 3
4 8 4 0

8 4 29 21
4 0 25 17

− −
− −

− −
− −

 
 
 
  
 

, and one can then readily verify that  

° ° 4AA AA I= = , 
 and so det 4A = . 
 

                                                 
1  This is not standard notation, some books use adjA  instead. 
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By the way, the 4 4×  case of odd positions is given by 

 
 
 
  
 

e o e o
o e o e
e o e o
o e o e

. 

 
Note that as an obvious consequence of the equation 

° ° ( )detAA AA A I= = , 
we have the following: 

� If A has a row of zeroes, then det 0A =  since that row of zeroes will 
produce a row of zeroes in °AA .  

Similarly, a column of zeroes in A will produce a column of zeroes in °AA . 
 

�  If A has two identical rows, then det 0A = , because those two identical 
rows will produce two identical rows in °AA . 

Similarly if A has two identical columns, it will have zero determinant. 
 
Clarifying notation, if we let Aij  denote the matrix obtained from A by deleting the ith row 

and jth column, then the ,i j− position of °A , ija% , is given by 

ija =% ( )1 det A
i j

ji
+− . 

 
Of course, if all one wanted was the determinant of a matrix, all we would need would be 
to compute one row or one column of °A . This follows directly from the fact that 

1 21 2det A i i nii i ina a a a a a= + + +% % %L 1 21 2i i ini i nia a a a a a= + + +% % %L  

for any i. But to compute kia% , one needs to scratch the ith row and kth column. For 
example, to compute the first column of °A , we would be using the first row of A, and we 
would compute the determinant of the matrix obtained when the first row and each of the 
columns is cancelled, and then we would do the sign change, and obtain the numbers 
( )0 4 8 4− − , and when we look at the dot product of this vector with the first row 

of A, which is ( )1 3 5 6 , we get 12 40 24 4− + − = , and thus, that is the determinant. 
 
Note that again we could have chosen any row or column of the matrix to perform this 
computation since ° ° ( )detAA AA A I= = . This way of computing the determinant is 
referred to as row (or column) expansion of the determinant of A. To streamline this 
important remark further, we highlight it further. As before, if we let Aij  denote the 
matrix obtained from A by deleting the ith row and jth column,  

To compute the determinant of any (square) matrix A , we can select an 
arbitrary road or column to expand by it. To do the computation, and for 
example’s sake, assume we have chosen the second row to expand by, 
then if let ij

)a  be the determinant of the submatrix obtained by crossing out 
the ith row and jth column, then we have  
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( ) ( ) ( ) ( )2 1 2 2 2 3 2
21 21 22 22 23 23 2 2det 1 1 1 1A

n
n na a a a

+ + + += − + − + − + + −) ) ) )La a a a . 
 
Observe the transpose operation is being accomplished by the switch in the indices. One 
situation where row or column expansion is particularly useful is when most of the 
entries in that row or column are 0 since then the number of subdeterminants to be 
computed is minimized 
 

Example 2. Consider A =

2 5 7 11 8 9
6 8 4 3 2 0
0 3 4 5 6 0
0 5 6 0 0 0
0 8 0 0 0 0
0 0 2 4 5 0

 
 
 
 
 
 
 
 

. Then we can expand by the last column, 

and we get that ( )7
det 1 9detA B= −  where B =

6 8 4 3 2
0 3 4 5 6
0 5 6 0 0
0 8 0 0 0
0 0 2 4 5

 
 
 
 
 
 
 

, and now expanding by 

the first column, we get ( )2
det 1 6detB C= −  where C =

3 4 5 6
5 6 0 0
8 0 0 0
0 2 4 5

 
 
 
  
 

. Note the 6 

received the sign it had in the matrix B, not in the matrix A. Computing the determinant 

of C by expanding by the third row, we have then ( )4
det 1 8detC D= −  where 

D =
4 5 6

6 0 0
2 4 5

 
 
 
 

, and det 6detD = − 5 6
4 5

 
 
 

6=− , so we get  

det A = 9 6 8 6 2592− × × ×− = . 
 

Corollary (Upper Triangular Matrices). If A is upper triangular, then  

11 22
1

det A
n

nn ii
i

a a a a
=

= = ∏L , 

the product of its diagonal entries. 
Proof. By induction on n. It is true for 2n =  easily. The rest follows readily by 
expanding by the last row, which is of the form ( )0 0 nnaL . Then we obviously do 
not care what any of the subdeterminants are (since we intend to take the dot product of 
this last row with the vector of subdeterminants) except for the one obtained when we 
cancel the last row and the last column. But then the left over matrix is also upper 
triangular, and so by inducting we get that the vector of subdeterminants is of the form 
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1

1

* *
n

ii
i

aL
−

=

     ∏  (note that since we are at a diagonal entry the sign is positive), and so 

we obtain the corollary.  z 
 
In particular, det 1I= . 
 
 
Example 3. Permutation Matrices. Let P be a permutation matrix where each row and 
each column has exactly one 1 in it, and zeroes everywhere else.  
 

In the 2 2×  case, we have two such matrices, the identity of determinant 1 and 0 1
1 0

 
 
 

 of 

determinant 1− . when the identity had positive determinant and 0 1
1 0

det  
 
 

1= − .  

 

 For the 3 3×  case there are 6 permutation matrices: I , 
0 1 0

0 0 1
1 0 0

 
 
 
 

 and 
0 0 1

1 0 0
0 1 0

 
 
 
 

 of 

determinant 1, and 
1 0 0

0 0 1
0 1 0

 
 
 
 

, 
0 0 1

0 1 0
1 0 0

 
 
 
 

 and 
0 1 0

1 0 0
0 0 1

 
 
 
 

 of determinant 1− . 

 
In general, the expansion of the determinant of a permutation matrix is relatively 
painless, and clearly since each Pij  is either a permutation matrix or has a row of zeroes, 
all we need to keep track are the signs, and eventually we will arrive at a 2 2×  
permutation matrix, so the determinant of a permutation matrix of any size is either 1+  
or 1− . As in the small cases, half of them have determinant 1+  and half of them have 
determinant 1− .  
 
One key observation needs to be made in general. Suppose a permutation matrix is 
obtained from the identity matrix by just simply swapping two rows, then this matrix 
would have 2n−  ones on the main diagonal, so if we were to expand by each of these 

first we would end up with the matrix 0 1
1 0

 
 
 

, of negative determinant. For example, 

1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 1

 
 
 
 
 
 
 

 where the 2nd and 4th rows have exchanged places, if we expand by the 

1st, 3rd and 5th rows first, we will easily get determinant 1− . 
 
As a consequence of the construction (and the theorem) we get: 



 121 

Theorem (Transposes). Let A be a square matrix. Then 
± °A A

ΤΤ =  and ( )det detA AΤ = . 

Proof. By induction on n. It is true for 2n =  easily. Just as readily, ( ) ( )A A jiij

ΤΤ = . By 

definition, the ,i j− entry of ±AΤ  is ( )1
i j+− ( )det A

ji

Τ , which equals ( )1
i j+− det A ij , by 

induction, but this is the ,j i− entry of °A . And the first claim has been established. For 

the second, since ° ° ( )detAA AA A I= = , by transposing this equation we get 

° ° ( )detA A A A A I
Τ ΤΤ Τ= = , and by we have just proven, this is tantamount to 

± ± ( )detA A A A A IΤ Τ Τ Τ= =  

which implies ( )det detA AΤ = . z 

 
Note actually we proved more—namely that if the Adjoint Theorem held for A, then it 
also held for AΤ . 
 

Example 4. Thus, as in the previous example, the adjoint of AΤ =
1 5 9 13
3 7 10 14
5 8 11 15
6 9 12 16

 
 
 
  
 

 is 

given by 

0 4 8 4
4 8 4 0

7 4 29 25
3 0 21 17

− −
− −

− −
− −

 
 
 
  
 

. 

 
 
The proof of the Adjoint Theorem is intimately connected with reduction, and as part of 
the consequence those developments we will obtain another major theorem about 
determinants and adjoints. But first we need a Corollary to the theorem. 
 

Corollary (Rank & Adjoints). Let A be n n× . Then exactly one of �, � 
or � occurs: 

 Matrix Adjoint Det 

� ( )Ar n=  °( )Ar n=  0≠  

� ( ) 1Ar n= −  °( ) 1Ar =  0 

� ( ) 2Ar n≤ −  °( ) 0Ar =  0 
 

Proof. Recall that we already know that A is invertible if and only if ( )Ar n= , and by the 
theorem, if det 0A ≠ , A is invertible. Once again the proof is by induction. If 2n = , then 
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the rank of A is either 0, 1 or 2. If ( ) 0Ar = , then clearly °A 0=  and det 0A = . If 

( ) 2Ar = , then we already know that det 0A ≠  and °( ) 2Ar = . Finally, if ( ) 1Ar = , then 

clearly det 0A =  (because otherwise A would be invertible), and so ° °AA AA 0= = , and 
since neither A nor °A  is 0 , we must have �. By induction if ( ) 2Ar n≤ − , then 

det 0Aij =  for all i, j since ( ) 1A ijr n< − , and so °A 0= , and � is done. On the other 

hand if ( ) 1Ar n≥ − , then we know A has an has 1 1n n− × −  invertible submatrix and so 
°A 0≠ . If ( ) 1Ar n= − , then A is not invertible, and so det 0A = . But since °AA 0= , 

every column of °A  is in ( )AN , and since ( )dim 1A =N , °( ) 1Ar = , and we have �. 

Finally, if ( )Ar n= , then since °A 0≠ , °det 0A ≠ , and ° ( ) 1detA A A−= , so °( )Ar n= . z 

 
A fact from the last corollary is worth isolating: 

Corollary (Determinants and Inverses). A is invertible if and only if 

det 0A ≠ . If that is the case, ° ( ) 1detA A A−= . 
 

Example 5. Let A =
1 2 3

3 6 9
12 24 36

 
 
 
 

, then °A 0=  since ( ) 1Ar = . Let A =
1 2 3

4 5 6
7 8 9

 
 
 
 

, then 

°A =
3 6 3

6 12 6
3 6 3

− −

−
− −

 
 
 
 

, while if A =
1 2 3

4 5 9
7 8 15

 
 
 
 

, then °A =
3 6 3

3 6 3
3 6 3

−

−
− −

 
 
 
 

. 

 
 
The adjoint together with row (and column) expansion allow us to discuss an alternate 
way to solve square linear systems with unique solutions. Ironically, it is a method that in 
the West precedes Gaussian elimination. 
 

Example 6. Cramer’s Rule. Consider the system Ax b=  where A =
1 3 5 6
5 7 8 9
9 10 11 12
13 14 15 16

 
 
 
  
 

, 

the matrix from a previous example, and b =
1
2
3
4

 
 
 
  
 

. Then since A is invertible, we know 
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that 1x A b−= . If we let x =
1

2

3

4

x
x
x
x

 
 
 
 
  
 

, since then °1 1

det A
A A− = , we have that  

ix =
det
v b

A
i  

where v i  is the ith row of °A . Consider the matrix A i  obtained from A when its ith column 

is replaced by b. Since A  and A i  agree in all columns but the ith column, the ith row of °A  

is the same as the ith row of °Ai . But then v bi  is nothing but ith row of °Ai  times the ith 

column of A i , which is the ,i i −entry of ° ( )detA A Ai i i I= . Thus we have  

ix = det
det

A
A

i . 

For example  

1x =

1 3 5 6
2 7 8 9
3 10 11 12
4 14 15 16

det

A

 
 
 
  
  1

4
=  and 2x =

1 1 5 6
5 2 8 9
9 3 11 12

13 4 15 16

det

A

 
 
 
  
  0

4
= . 

 
 
Now we are ready for the second major theorem on determinants: 
 

Theorem (Multiplicativity). Let A and B be n n× . Then ± ° °AB BA=  and 
det det detAB A B= . 

 
The proof of this theorem can be found in the Appendix of Proofs. The mantra to go 
with this theorem is, of course,  

the determinant of a product is the product of the determinants. 
 
From the geometric point of view this is clear, since the scale of magnification of volume 
under the transformation Af  is det A , in other words, we have that the area of any figure 
when transformed by Af  will be multiplied by det A . And since A B ABf f f=o , we should 
have that the eventual change of a volume under ABf  is det det detAB A B= . 
 
Note that since 1AA I− = , we have 

Corollary (Determinant of Inverse). Let A be invertible, then 

( ) 11 1
det det

det
A A

A
−− = = . 
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The Multiplicativity Theorem allows us to predict the effect that elimination has on the 
determinant—recall the three key steps to row reduction:  

� Permuting rows; 
� Multiplying a row by a nonzero number,  

and 
 � Adding a multiple of a row to another row. 
Since each of these is multiplication on the left by the appropriate matrix, we can use the 
theorem to gauge the effect of reduction on the determinant. 
 
Of course, if we swap two rows of a matrix A, its determinant will change signs 
because the determinant of such a permutation matrix (as we saw before) is 1− . If we 
multiply a row by a nonzero number, the determinant is being multiplied by the same 
number since we are multiplying by a diagonal matrix with all entries 1 except for the 
nonzero number, and finally if we add a multiple of a row to another row, we do not 
change the determinant since we are multiplying by a triangular matrix with 1’s on the 
main diagonal. 
 

Example 7. Let A =

1 2 7 8 4
2 3 13 6 2
3 5 4 5 5
2 5 7 8 7
2 8 12 14 0

− 
 
 
 
 
 
 

. Then we can start by pulling the 2 from the last 

row to obtain the matrix B =

1 2 7 8 4
2 3 13 6 2
3 5 4 5 5
2 5 7 8 7
1 4 6 7 0

− 
 
 
 
 
 
 

. What is the relation between the 

determinants of the two matrices? Since B DA=  where D is the diagonal matrix with 1’s 
on the diagonal except for the 5,5− position where there is a 1

2 , we have that 1
2det D = , 

and so det 2detA B=  (note the 2 has been pulled). So it suffices to compute detB . But 
in this matrix, we can subtract multiples of the last row from the other rows (pivot on the 

5,5− position) to obtain the matrix with the same determinant, 

0 6 13 15 4
0 5 1 8 2
0 7 14 16 5
0 3 5 6 7
1 4 6 7 0

− −
− − −
− − −

 
 
 
 
 
 
 

. 

Then expanding by the first column, since the 5,5− position has a positive sign, we have 

that this matrix has the same determinant as the matrix 

6 13 15 4
5 1 8 2
7 14 16 5
3 5 6 7

− −
− − −
− − −

 
 
 
  
 

, and then by 

column reducing (which can not be done for systems, but can be done for determinants 
since a matrix and its transpose have the same determinant), when we use the 
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2,2−position, we get 

71 13 119 22
0 1 0 0
77 14 128 33
28 5 46 17

−

− − −
− − −

 
 
 
  
 

, of the same determinant. Expanding this 

determinant by the second row, we get 
71 119 22

77 128 33
28 46 17

−

− −
− −

 
 
 
 

 of equal determinant. Finally, 

we could choose to compute this 3 3×  directly, or to do some more reduction. We could 

subtract twice the third row from the second one, obtaining 
71 119 22

21 36 1
28 46 17

−

− − −
− −

 
 
 
 

, and then 

use the 2,3−position to do cleaning in that column, getting the matrix 
533 911 0

21 36 1
385 658 0

− − −
− −

 
 
 
 

. 

Expanding the determinant of this matrix by the third column we get since the 
2,3−position has a negative sign, that we do not change determinants if we consider the 

matrix 533 911
385 658− −

 
 
 

, which has determinant 21, and so det 21B = , and so det 42A = . 

There are many alternate ways to compute this determinant, but they will all lead to the 
same answer, 42. 
 
 

Example 8. What is the determinant of the matrix M =
1 1 1 1

1 1 1 1
1 1 1 1
1 1 1 1

x
x

x
x

−
−

−
−

 
 
 
  
 

? If we 

add each other row to the first row, the determinant has not changed, and we get the 

matrix N =
4 4 4 4

1 1 1 1
1 1 1 1
1 1 1 1

x x x x
x

x
x

− − − −
−

−
−

 
 
 
  
 

. Now we know then that 

( )det det 4 detM N Kx= = −  

where K =
1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

x
x

x

−
−

−

 
 
 
  
 

. Subtracting now the first row from the other rows, 

again the determinant does not change, but now the matrix is L =
1 1 1 1
0 0 0
0 0 0
0 0 0 0

x
x

x

−
−

−

 
 
 
  
 
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which by triangularity has determinant 3x− , and so  
( ) ( ) 3det det 4 det 4M N Kx x x= = − = − − . 

 
 
We finish the section with another useful consequence of the Multiplicativity Theorem 
allows 

Corollary (Determinants & Block Upper Triangular). Let M = A B
0 C

 
 
 

 

be in balanced block upper triangular form. Then  
det det detM A C= . 

Proof. Note that it is not required that A and C be of the same size, just each of them be a 
square matrix. If C is not invertib le, then det 0 det detM A C= = . Otherwise, consider the 

matrix X =
1

1

I BC
0 C

−

−

 −
 
 

. Then by expanding by the first column, and then by the new 

first column, etcetera, we see that 1 1
det det

det
X C

C
−= = . Now  

N XM= =
1

1

I BC
0 C

−

−

 −
 
 

A B
0 C

 
 
 

=
A 0
0 I

 
 
 

. 

Then expanding by the last column, and then by the new last column, etcetera, we see 
that det detN A= . But then 

det
det det det det

det
M

A N X M
C

= = = , 

and we are done. z 
 
The theorem can easily be extended by induction to block triangular matrices with more 
than 2 blocks. 

Example 9. Let A =

2 1 3 4 5 6
1 2 7 8 9 2
0 0 3 1 5 6
0 0 1 3 7 8
0 0 0 0 4 1
0 0 0 0 1 4

 
 
 
 
 
 
 
 

. Then we can see this as a 3 3×  block upper 

triangular, and so the determinant is the product of the determinant 2 1
1 2

 
 
 

, which is 3, 

the determinant of 3 1
1 3

 
 
 

, 8, and the determinant of 4 1
1 4

 
 
 

, 15. Thus 

det 3 8 15 360A = × × = . 
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�� The Need for Eigenvalues 
 
 
We start the study of eigenvalues with a well-known example: 
 
Example 1. The Fibonacci Sequence. The sequence 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 
144,… is known as the Fibonacci sequence. In symbols,  

0 0F = , 1 1F = , 2 1F = ,…, 1nF − , nF , 1 1n n nF F F+ −= + ,… 
Note that our level of understanding of the sequence is limited. For example, if we 
wanted to know 25F , we would have to compute all the iF ’s prior to it. So we look for an 
alternate way of gaining insight into the sequence. 
 

Let un = 1n

n

F

F
+ 

 
 

, so 0u = 1
0

 
 
 

, 1u = 1
1

 
 
 

, 2u = 2
1

 
 
 

, 3u = 3
2

 
 
 

, et cetera. Let A = 1 1
1 0

 
 
 

. 

Then  

Aun = 1

1

n n

n

F F

F
+

+

+ 
 
 

2

1

n

n

F

F
+

+

 
=  

 
1un+= , 

so 0 1Au u= , 1 2Au u= , 2 3Au u= , etcetera. But then 2
2 1 0 0u Au AAu A u= = = , similarly, 

2 3
3 2 0 0u Au AA u A u= = = , and in general 

0A u un
n= . 

 
Unfortunately, just because we have this expression does not mean we are ready to 
compute 25u  since that would require us knowing 25A , and it does seem that we are 
going around in circles. Of course, machines are quite useful, but there is another more 
interesting way. 
 
Nobody would disagree that if A had been a diagonal matrix, its powers would be easily 
computed since they are nothing but the powers of the entries in the diagonal of the 
matrix. But A is not diagonal. However, can we find a matrix P such that  

1P AP D− =  
is a diagonal matrix? If so, how? And would that be useful? Let us tackle the last issue 
first.  
 
Suppose we had 1P AP D− = . Solving for A, we would get 1A PDP−= , and then 
multiplying this by itself, we have  

2 1 1 1 2 1A AA PDP PDP PDDP PD P− − − −= = = = , 
and similarly 

3 2 2 1 1 2 1 3 1A A A PD P PDP PD DP PD P− − − −= = = = , 
and continuing by induction one has that for any positive integer n,  

1A PD Pn n −= . 
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Thus, the powers of A would be readily available (by just two matrix multiplications) 
from the powers of D. 
 
Now we proceed to decide whether we can find such a diagonal matrix D and such a 
matrix P. If we are to have 1P AP D− = , then we must equivalently have that AP PD= , 

with P invertible. Let then D = 0
0
λ

µ
 
 
 

 and ( )P u v= , where the latter is given in terms 

of its columns. From AP PD= , by simple matrix multiplication, we have that  
( ) ( )Au Av AP PD u v= = = λ µ ,  

and so we arrive at the necessary condition that  
Au u= λ  and Av v= λ  

and since we want u and v to be independent, in particular we must have that u 0≠  and 
v 0≠ . 
 
 
Thus, this simply we have arrived at the definition of eigenvalue and eigenvector.  
 
Let M be a square matrix, and let w be a nonzero vector. Then w is said to be an 
eigenvector of M with corresponding eigenvalue α  (just a scalar) if 

Mw w= α . 
 
Next, how do we find these eigenvector and eigenvalues? If Mw w= α , then Mw Iw= α , 
so ( )M I w 0−α = , and since we want w 0≠ , we must have that the matrix M I−α  is not 

invertible, and then ( )w M I∈ −αN .  
 
So to find eigenvalues for a matrix M, we needed to find scalars λ  so that the matrix 
M I−λ  is not invertible, or equivalently, ( )det 0M I−λ = . This leads to the notion of the 

characteristic polynomial of a matrix, which is simply defined as ( )det 0M Ix− =  

where we now consider x to be the typical polynomial unknown. We will use ( )Mc x  to 
denote the characteristic polynomial of M.  
 
After one has found eigenvalues, then one easily finds eigenvectors by computing null 
spaces of the appropriate matrices. In fact, if λ  is an eigenvalue for the matrix M, then 
the null space of M I−λ , ( )M I−λN , is called the eigenspace corresponding to that 
eigenvalue. Every vector in it except the zero vector is an eigenvector.  
 
 

Returning to the Fibonacci example, we need a λ  such that A I−λ = 1 1
1
− λ

−λ
 
 
 

 is not 

invertible. But that is equivalent to λ  being a root of the characteristic polynomial 

( )Ac x = ( )det detA Ix− = 1 1
1

x
x

−
−

 
 
 

21 x x=− − + . 
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The roots of this polynomial are 
1 5

2

+λ =  and 
1 5

2

−µ = , so these two numbers are the 

eigenvalues of the matrix A = 1 1
1 0

 
 
 

. Those historically minded will recognize these two 

numbers as being connected with the Golden Ratio, 1.6180λ ≈  and 0.6180µ ≈ − . 
 
To find eigenvectors, we need to find vectors in ( )A I−λN  and ( )A I−µN . Of course, 
once we find one eigenvector, any multiple of it would also work since we know the null 
space of any matrix is a subspace. But as it turns out each eigenvalue can only provide 
one column of the matrix P since although there are infinitely many vectors in each null 
space, each is populated with multiples of only one vector, they are 1-dimensional.  
 

So we need the null space of A I−λ = 1 1
1
− λ

−λ
 
 
 

, and since we know the rank of this 

matrix has to be 1 (it is not invertible), we can immediately write its reduced form 

without any work: 1
0 0

−λ 
 
 

, and so the vector 
1
λ 

 
 

 is an eigenvector for A with 

corresponding eigenvalue λ . Equivalently, we could have verified that 

A
1
λ  = 

 
1λ +

λ
  = 
  1

λ λ  
 

. 

Just as easily, we could have found 
1
µ 

 
 

 to be an eigenvector for A for the eigenvalue µ . 

 

Let P =
1 1
λ µ 

 
 

. Then 1 1

5
P− = 1

1
−µ 

 − λ 
, and by construction,  

1P AP D− = = 0
0
λ 

 µ 
. 

So 

1 1

5
A PD Pn n −= =

1 1 1 1n n n n

n n n n

+ + + + λ − µ λµ − λ µ
 

λ − µ λµ − λ µ 
. 

 

Sinceu An
n = 1

0
 
 
 

1

5
=

1 1n n

n n

+ + λ −µ
 

λ −µ 
, we get  

5

n n

nF
λ −µ= . 

 
Moreover since 1µ < , we know that 0nµ →  for larger n , so we can simply say that nF  

is the nearest integer to 
5

n

nF
λ

≈ . So for example, 
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25F ≈
25

5

167761.000006

5
75024.99999

λ = =  

and we can readily claim that 25 75025F = , as is indeed the case. 
 

Also we can see that, 1 1
1

n n
n

n n
n

F
F + +

+

λ −µ= λ −µ , but since lim 0n

n→∞
µ = ,  

1

1 5 1
lim

2
n

n
n

F
F→∞

+

−= =λ , 

another of the forms of the Golden Ratio—a fact that Fibonacci himself discovered and 
was proud of. 
 
 
Now we examine another example—Example 5 from Section �. This example was 
closely associated to the graphs and digraphs that have been previously discussed—
except that now after a discrete (and well defined) moment in time, one will move from 
one vertex to (possibly) another one with certain probabilities. The key assumption is that 
these probabilities do not change as we travel in time through the network. Such a 
process is called a (finite) Markov chain. 
 
Example 5 Revisited. Every year, 10% of the people in Southern California move to 
Northern California while 20% of the people from Northern California move to Southern 
California. Assuming the total population is a constant, what is 
the long-range behavior of the population? In this case, our 
digraph is very simple: 
 

The associated matrix with this example was A = 0.9 0.1
0.2 0.8

 
 
 

 where at each entry one 

places the probability of going from the row to the column in one transition—hence the 
name transition matrix. 
 

Then what does 2A = .83 .17
.34 .66

 
 
 

 represent? Just as in the graph case, it represents the 

probabilities of going from one stage to the other but in a period of two years, not 1. 
Thus, 17% from Southern California will move to Northern California in two-years while 
34% will move from Northern California to Southern, or viewed in another way, the 
probability that a random Southern Californian will be in Northern California in two 

years is 17%. Similarly, 3A = .781 .219
.438 .562

 
 
 

 would represent the probabilities in 3 years—

thus a resident in Southern California at present has probability .781 of being there in 3 
years.  
 
 
The long-range behavior of the process would then be determined by the matrix  

10%

20%
S N
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A∞ = lim An

n→∞
. 

How could we compute this? By suing eigenvalues and eigenvectors, for if 1P AP D− = , 
then as before  

1A PD Pn n −=  
so, by taking limits, 

1A PD P∞ ∞ −= . 

So we pursue the eigenvalues and eigenvectors of A = 0.9 0.1
0.2 0.8

 
 
 

. Now, easily 

A 1
1

 
 
 

1
1

 =  
 

, so we know that 1 is an eigenvalue, and an eigenvector for that eigenvalue 

is 1
1

 
 
 

. This occurred because the row sums of A where all the same, 1 in this case. But 

this eigenvalue can only provide one column of the matrix P.  
 
So we need to search for another value. The characteristic polynomial of A, i.e., the 

determinant of A Ix− = .9 .1
.2 .8

x
x

−
−

 
 
 

 equals  

( )Ac x = ( )( ) 2.9 .8 .02 .7 1.7x x x x− − − = − + , 
and the roots of this quadratic are 1 (which we already knew) and 0.7 . Now we need an 

eigenvector for the latter, so we need to find the null space of .7A I− = .2 .1
.2 .1

 
 
 

, which 

again is 1-dimensional, with basis 1
2−

 
 
 

. Thus, we are now ready to write P = 1 1
1 2−

 
 
 

, 

which is clearly invertible ( det 3P =− ), and satisfies 

AP = .9 .1
.2 .8

 
 
 

1 1
1 2−

 
 
 

1 .7
1 1.4−

 = = 
 

1 1
1 2−

 
 
 

1 0
0 .7

 
 
 

PD= , 

and so we have that   
1A PD Pn n −= . 

Taking limits as n → ∞ , since ( ).7 0
n

→ , we get that Dn → 1 0
0 0

 
 
 

, so  

A∞ lim A Pn

n→∞
= = 1 0

0 0
 
 
 

1 1

3
P− = 2 1

2 1
 
 
 

. 

So in the long run, this model would predict that 2
3  of the population would live in 

Southern California. 
 
Note that if we had started with the population being distributed that way, namely 2

3  in 
Southern California and 1

3  in Northern California, then the fo llowing year, since 10% of 
2
3  is the same as 20% of 1

3 , we would have that although the actual people living on each 
side of the state would change, the numbers would not. Namely we would arrive at a 
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stable situation. And actually, since the powers of A do have a limit, no matter what 
population we start with, we will tend to that stable 2

3  vs. 1
3  population split. The 

following various starting positions and their evolutions through 12 years confirm our 
expectations: 

 SC NC SC NC SC NC SC NC 
0 0.000% 100.000% 100.000% 0.000% 50.000% 50.000% 20.000% 80.000% 
1 20.000% 80.000% 90.000% 10.000% 55.000% 45.000% 34.000% 66.000% 
2 34.000% 66.000% 83.000% 17.000% 58.500% 41.500% 43.800% 56.200% 
3 43.800% 56.200% 78.100% 21.900% 60.950% 39.050% 50.660% 49.340% 
4 50.660% 49.340% 74.670% 25.330% 62.665% 37.335% 55.462% 44.538% 
5 55.462% 44.538% 72.269% 27.731% 63.866% 36.135% 58.823% 41.177% 
6 58.823% 41.177% 70.588% 29.412% 64.706% 35.294% 61.176% 38.824% 
7 61.176% 38.824% 69.412% 30.588% 65.294% 34.706% 62.823% 37.177% 
8 62.823% 37.177% 68.588% 31.412% 65.706% 34.294% 63.976% 36.024% 
9 63.976% 36.024% 68.012% 31.988% 65.994% 34.006% 64.783% 35.217% 
10 64.783% 35.217% 67.608% 32.392% 66.196% 33.804% 65.348% 34.652% 
11 65.348% 34.652% 67.326% 32.674% 66.337% 33.663% 65.744% 34.256% 
12 65.744% 34.256% 67.128% 32.872% 66.436% 33.564% 66.021% 33.979% 

 
 
In a similar situation previously, we looked at the following problem  
 
Example 2. In Orangerock Park, the female deer population can be classified into three 
groups: young, mature and old. Every year, 30% of the young population matures, and 
5% dies, while the rest remains classified as young. Of the mature population, 25% 
changes to old, another 25% gives birth to young, and 15% dies. Of the group of old, 

50% dies every year. Suppose the vector u =
120

200
80

 
 
 
 

 represents the number of deer in 

each of the three respective categories, young, mature and old. If we then let 

A =
.65 .25 0

.3 .60 0
0 .25 .5

 
 
 
 

, then Au =
128

156
90

 
 
 
 

, would represent the population next year, and then 

2A u , 3A u , 4A u , … would represent the populations in the consequent years, so again the 
powers of A become relevant, and so do the eigenvalues. 
 
Again, to find eigenvalues we need to look for roots of the characteristic polynomial: 

( )Ac x = ( )det detA Ix− =
.65 .25 0

.3 .6 0
0 .25 .5

x

x
x

−

−
−

 
 
 
 

, 

and expanding this determinant by the third column, we get ( ).5 detx− .65 .25
.3 .6

x
x

−
−

 
 
 

, 

which equals ( )( ) ( )( )( )2.5 .315 1.25 .5 .9 .35x x x x x x− − + = − − − , and so we have 3 
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eigenvalues for A, they are .35, .50 and .90. As it turns out, in this case we will be able to 
find a matrix P such that 1P AP−  is diagonal by finding an eigenvector for each of the 
eigenvalues. As before this is tantamount to finding some null spaces.  
 

For the eigenvalue .35λ = , .35A I− =
.3 .25 0

.3 .25 0
0 .25 .15

 
 
 
 

, and a basis for its null space is 

5

6
10
−

 
 
 
 

, while for .5λ = , .5A I− =
.15 .25 0

.3 .1 0
0 .25 0

 
 
 
 

 and its null space is spanned by 
0

0
1

 
 
 
 

. 

Finally for .9λ = , .9A I− =
.25 .25 0

.3 .3 0
0 .25 .4

−

−
−

 
 
 
 

, and an eigenvector is 
8

8
5

 
 
 
 

. 

 

Thus if we let P =
5 0 8

6 0 8
10 1 5
−

 
 
 
 

, then we have that 1P AP D− = =
.35 0 0

0 .5 0
0 0 .9

 
 
 
 

. Of course, if 

we had permuted the columns of P, or multiplied them by scalars, since a multiple of an 
eigenvector is an eigenvector, this would result in the corresponding permutation of the 

entries in D. E.g., if we take Q =
0 8 10

0 8 12
1 5 20

−

− −
−

 
 
 
 

, then 1Q AQ D− = =
.5 0 0

0 .9 0
0 0 .35

 
 
 
 

. 

 
Note that since D 0∞ = , we will also have that A 0∞ = , so the population of deer will 
disappear in the long run, regardless of the present population. 
 
The previous three examples illustrated some of the uses of eigenvalues and eigenvectors. 
Let us review what we have learned.  
 
Suppose A is a square matrix. If we are to find a P such that 1P AP D− = , a diagonal 
matrix, then we know the columns of P are eigenvectors of A while the diagonal entries 
of D are the corresponding eigenvalues. That fact itself motivated the definition of 
eigenvalues and eigenvectors, characteristic polynomial and eigenspace. Alas, it will not 
be true that we will be able to find such a P for an arbitrary matrix A—but one can come 
close. 
 
First we develop further understanding of the key notions of eigenvalue and eigenvector, 
and their connections with the powers of a matrix. 
 
 

Theorem (Easy Eigenvalues). Let A be n n× . Let u be an eigenvector for 
A with corresponding eigenvector λ . Then the following are true: 
� u is an eigenvector for 2A  with corresponding eigenvalue 2λ . 
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� If a is any scalar, then u is an eigenvector for Aa  with 
corresponding eigenvalue aλ . 

� If ( )p x  is an arbitrary polynomial, then u is an eigenvector for 

( )Ap  with corresponding eigenvalue ( )p λ . 

� If A is invertible, then 0λ ≠ , and u is an eigenvector for 1A−  with 

corresponding eigenvalue 
1

λ
. 

Proof. It is given that Au u= λ , so ( ) ( ) ( ) 2A Au A u Au u u= λ = λ = λ λ = λ , and we have 
�. In fact, � and � are very similar. Assume now that A is invertible. Since Au u= λ , 

( ) ( )1 1A Au A u− −= λ , so 1u A u−= λ , and since u 0≠ , 0λ ≠ , and then 1 1
A u u−

λ
= , and 

we have �. z 
 
 

Example 3. Let A =
1 2 3

5 4 3
2 1 5

−
−

 
 
 
 

. Then u =
1

1
1

 
 
 
 

 is an eigenvector for the eigenvalue 6 

since 6Au u= . Now 2A =
17 7 12

19 29 12
7 5 34

−
−

 
 
 
 

 has the same eigenvector with the eigenvalue 

36, and 2A− =
2 4 6

10 8 6
4 2 10

− − −

− −
− −

 
 
 
 

’s eigenvalue for the vector is 12− . Similarly,  

3 22 50 12A A A I+ − + =
72 36 36

72 36 36
36 0 36

− −

−
−

 
 
 
 

 

has 0 as the eigenvalue corresponding to u since 3 26 2 6 50 6 12 0+ × − × + = . Finally, 

1 1

84
A− =

17 13 18

31 1 18
13 5 6

−

−
−

 
 
 
 

 satisfies 1 1
6A u u− = . 

 
 
Note that in the previous example we did not pursue the computation of the whole set of 
eigenvalues, nor of the characteristic polynomial, these sometimes are not necessary. In 
general, the computation of the characteristic polynomial is rather nontrivial, although 
great strides have been accomplished in the last decades through the use of computers 
and calculators. And in actuality, it is not the characteristic polynomial of a matrix that is 
as interesting as the roots of that polynomial, the eigenvalues of the matrix, and its 
corresponding eigenvectors. Induction easily does the first part of the following: 
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Theorem. Let A be an n n×  matrix, and let ( ) ( )detA A Ic x x= −  be its 
characteristic polynomial. Then  
� ( )Ac x  is a polynomial of degree n, and the coefficient of the highest order 

term is ( )1
n− . 

� Its roots 1λ , 2λ , …, nλ  are exactly the eigenvalues of A, and  

det A =
1

n

i
i=

λ∏ . 

Proof. Only the last remark deserves to be proven. We have  
( ) ( ) ( )( ) ( )1 2detA A I nc x x x x x= − = λ − λ − λ −L , 

so if we let 0x = , we get det A =
1

n

i
i=

λ∏ . z 

 
In words then,  

the determinant of a matrix is the product of its eigenvalues. 
 
One uses the word spectrum to denote the complete list of eigenvalues of a matrix. 
Naturally, an n n×  matrix will have n elements in its spectrum—but as we will see below 
some of them may have to be complex numbers. 
 
 
Another function that is of intense interest is the trace of a matrix, which is defined as 
the sum of the entries of the main diagonal of a matrix. We will let tr A  denote the trace, 
and a wonderful fact easily obtained from polynomials (and proven below) is that the 

the trace of a matrix is the sum of its eigenvalues. 
 
Also true is that the trace is the coefficient of 1nx −  in the characteristic polynomial, 
multiplied by ( ) 1

1
n−− . 

 
Example 4. Let A In= , the identity matrix. Then clearly, ( ) ( )1A

n
c x x= − , so all of its 

eigenvalues are 1, and we say of multiplicity n, since 1 is a root of the polynomial that 
many times. The spectrum of I is 1, n times. 
 
Example 5. Let us now consider A Jn= , the matrix of all 1’s. Clearly, if 2n = , then 

( ) ( ) ( )
2

2
1 1 2Jc x x x x= − − = − . So its spectrum is 2 and 0. 

 

Let us consider 
1 1 1

1 1 1
1 1 1

det
x

x
x

−

−
−

 
 
 
 

. If we add the bottom two rows to the first row 
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(which does not alter the determinant), we get the matrix 
3 3 3

1 1 1
1 1 1

x x x

x
x

− − −

−
−

 
 
 
 

, and so 

( ) ( )
3

3 detJc x x= −
1 1 1

1 1 1
1 1 1

x
x

−
−

 
 
 
 

, but by subtracting the first column from the other two 

columns, we have then ( ) ( )
3

3 detJc x x= −
1 0 0

1 0
1 0

x
x

−
−

 
 
 
 

, which by expanding on the first 

row then gives ( ) ( )
3

23Jc x x x= − , so the eigenvalues of 3J  are 3 (with multiplicity 1) and 
0 with multiplicity 2, or equivalently, its spectrum is 3, 0 and 0. This argument should 
look familiar. 
 
The similar technique of adding all the rows to the first row, and pulling out the n x−  
term from the first row, and then subtracting the first column from every other column, 
we get that the characteristic polynomial of Jn  is given by ( ) ( ) 11 1

nnn x x
−−− − , and so its 

spectrum is n (of multiplicity 1) and 0 (of multiplicity 1n− ). 
 
Note that the determinant and trace facts are easily verified in the two examples just 
given. But they are particularly transparent in the following important generic example: 
 
Example 6. Eigenvalues and Upper Triangulars. In fact the eigenvalues in this case are 
easily observable, the eigenvalues of any triangular matrix are its diagonal entries:  

if A =
11

22

* *

0 *

0 0 nn

a

a

a

 
 
 
 
  
 

L
L

M M O M
L

, then A Ix− =
11

22

* *

0 *

0 0 nn

a x

a x

a x

− 
 − 
 
  − 

L
L

M M O M
L

, so 

( ) ( ) ( )( ) ( )11 22detA A I nnc x x a x a x a x= − = − − −L . 
Also notice that as further clarification of the Easy Eigenvalues Theorem above, the 
diagonal entries of 2A  are the squares of the diagonal entries of A, and since 2A  is also 
upper triangular, we see that these squares are then the eigenvalues of 2A . Similarly for 
the inverse 
 
 

Theorem (Spectrum of Inverse). Let A be n n× . Then A is invertible if 
and only if none of its eigenvalues is 0. If this is the case, and 

1λ , 2λ ,…, nλ  is the spectrum of A, then 
1

1

λ
,

2

1

λ
,…,

1

nλ
 is the spectrum of 

1A− . 
Proof. The first claim follows immediately from the connection between eigenvalues and 
the determinant. But it can also be seen directly, since a matrix is not invertible if and 
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only if it has a nontrivial null space, and that is equivalent to having an eigenvector for 
the eigenvalue 0. Now, ( ) ( )( ) ( ) ( )1 2 detA A Inc x x x x x= λ − λ − λ − = −L . But then 

1
det A I

x

 −   1 2

1 1 1
nx x x

     = λ − λ − λ −         
L . Also ( )

1 2

1det A
n

n

x
x −

λ λ λ
=

L
, and thus  

( ) ( )1 1 1
det detA I A I A

x
x x− −   − = − =        

( )1det Ax − 1
det I A

x

 − =  
( )

1 2

1
n

n

nx

λ λ λ
−

L 1

1

x

 λ −   2

1

x

 λ −  
L 1

n x

 λ − =  
 

( )1
n

−
1

1
x

λ

 
−  

  2

1
x

λ

 
−  

 

1

n

x
λ

 
− =  

 
L

1

1
x

λ

 
− 

  2

1 1

n

x x
λ λ

  
− −  

   
L  

and the claim is proven.  z 
 

 

Example 7. Let A = 1 3
3 1

 
 
 

. Then since A 1
1

 
 
 

4
4

 =  
 

, 4 is an eigenvalue. By the trace, 

the other eigenvalue has to be 2− . Now, 1A− =
31

8 8
3 1
8 8

−

−

 
 
 

, and the eigenvectors of this 

matrix are 
1

4
 and 

1

2

−
. 

 

Example 3 Revisited. Let A =
1 2 3

5 4 3
2 1 5

−
−

 
 
 
 

. Then we already know that 6 is an 

eigenvalue. We have det 84A = −  and tr A 10= . So if we let λ  and µ  be the other two 
eigenvalues, we must have that 6 84λµ = −  and 6 10+ λ + µ = , or equivalently 

14λµ = −  and 4λ + µ = . By simple algebra, we get that the spectrum of A is 6, 

2 3 2+  and 2 3 2− . Thus the spectrum of 1 1

84
A− =

17 13 18

31 1 18
13 5 6

−

−
−

 
 
 
 

 consists of 
1

6
, 

1 3 2 2

142 3 2

−
+

=  and 
1 3 2 2

142 3 2

− −
−

= . Note for example that the trace condition is 

easily verified: 
1 4 5

6 14 42

−− = . 

 
 
As a trivial consequence of a fact about determinants, we get an interesting consequence 
about eigenvalues.  
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Theorem (Eigenvalues and Upper Triangular Form). Let M = A B
0 C

 
 
 

 

be in balanced block upper triangular form. Then ( ) ( ) ( )M A Cc x c x c x= . 
Thus, the spectrum of M is the union of the two spectra of A and C.  

Proof. By the determinant fact, ( ) ( ) ( )det det detM I A I C Ix x x− = − − , and the claim 
follows. z 
 

Example 8. Let A =

2 1 3 4 5 6
1 2 7 8 9 2
0 0 3 1 5 6
0 0 1 3 7 8
0 0 0 0 4 1
0 0 0 0 1 4

 
 
 
 
 
 
 
 

. Then we can see this as a 3 3×  block upper 

triangular, and so the eigenvalues are the eigenvalues of 2 1
1 2

 
 
 

 which are 3 and 1 (look 

at the row sum, and hence the eigenvector 1
1

 
 
 

), and 3 1
1 3

 
 
 

 of spectrum 4 and 2, and 

finally, 5 and 3 which are the eigenvalues of 4 1
1 4

 
 
 

. Observe that although the blocks 

here were of the same size, that was not at all required, rather what was needed was that 
the diagonal blocks be square. 
 
 
Example 9. Geometry and Eigenvectors. In this example, we explore some of the 
geometric meaning of eigenvector (and eigenvalue). We concentrate in the plane to start 

with since this is easiest to visualize. Consider first A = 0 1
1 0

 
 
 

, which we saw before 

was the reflection on the y x=  line. But then clearly, we already have an eigenvector, 
1
1

 
 
 

 which is on the line of the reflection, so it is a fixed point, and hence an eigenvector 

of eigenvalue 1. The other obvious eigenvector is 1
1−

 
 
 

 and for this one 1 1
1 1

−
−

   
   
   

a , so 

the eigenvalue is 1− . This example illustrates very clearly the import of eigenvectors 
from the geometrical point of view. The search for eigenvectors is the search for lines 
that get mapped to themselves as the matrix transforms the vector space. In the 
reflection case, the two lines are very obvious, the line of reflection and the line 
perpendicular to it (both through the origin of course, since we are discussing subspaces). 
 
To confirm our suspicions, consider the reflection on the line 3 4 0x y+ = . As we saw 
before, this reflection is accomplished by the matrix 2A I uuΤ= −  where u is a unit 
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normal to the line, which in this case we can take 
1

5
u = 3

4
 
 
 

, and so 
1

25
A = 7 24

24 7
−

− −
 
 
 

. 

Readily, 4
3

− 
 
 

 is an eigenvector with eigenvalue 1, and 3
4

 
 
 

 is also with eigenvalue 1− . 

Just as expected. 
 
 
Example 10. Nasty Issues. With better understanding under our belt, we can see that 
some matrices will not have eigenvalues (real eigenvalues, that is). In particular if we 
take any rotation, because of the geometric nature of the transformation, there should not 
be any lines that are fixed, and thus there should not be any eigenvalues. For example, let 

A = 0 1
1 0

− 
 
 

, which is 90o -rotation. Its characteristic polynomial is 2 1x + , the most 

notorious of polynomials without a real root. Of course, if we consider complex numbers, 

this matrix has two eigenvalues i  and i− , and corresponding eigenvectors: 1
i−

 
 
 

 and 

1
i

 
 
 

. Observe that the trace and determinant condition still hold in this case, namely the 

sum of the eigenvalues is 0, which is the trace, and the produc t is 1, which is the 
determinant. 
 
Thus if we will claim that the spectrum of an n n×  matrix has n numbers in it, we would 
have to extend our view of number to include the whole set of complex numbers. We will 
not do that in this course, since we will concentrate on matrices that have real 
eigenvalues. 
 
 



 140

 Triangularization & Diagonalization 
 
 
In the last section we saw that for a given matrix A it would be desirable if we could find 
matrices invertible P and diagonal D so that P A . It was within this pursuit that 
the fundamental concepts of eigenvalue and eigenvector were developed. So we now 
formalize this relation. 

1 P D− =

 
Let A and B be square matrices. They are said to be similar if there is an invertible matrix 
P such that . This definition does not seem balanced in the sense we could 
almost say that instead of A and B being similar, we should refer to A being similar to B. 
But this superficial asymmetry is remedied easily, since if P A , then , 
where Q . 

1P AP B− =

1P−

1 P B− = 1Q BQ A− =
=

 
A matrix is called diagonable if it is similar to a diagonal matrix. Thus, in the 3 
examples at the beginning of the previous section, our matrices were all diagonable. That 
will not always be the case, as some examples will show below. A matrix is called 
triangularizable if it is similar to a triangular matrix. We will see below that although 
every matrix is not diagonable, every matrix is triangularizable. 
 
First we make a simple observation about the trace of a product: 

Let M be m  and let N be n . Then . n× m× ( ) (tr trMN NM= )

)




The reason is simple bookkeeping:  

( ) ( ) ( ) (
1 1 1 1 1 1 1 1

tr trMN MN NM NM
m m n m n n m n

ik ki ki ik ki iki k
i i k i k k i k

m n n m n m
= = = = = = = =

= = = = = =∑ ∑∑ ∑∑ ∑∑ ∑ . 

 

Example 1. Let M , and let N . NowMN  

is  of trace  while NM  is 

 of the same trace. 

1 2 3
4 5 6
 =  

2 3a c+ +

a b
c d
e f

   =     

5 6d f+

2 3 2 3
4 5 6 4 5 6
a c e b d f
a c e b d f
+ + + +
+ + + +

 =   

4 2 5 3 6
4 2 5 3 6
4 2 5 3 6

a b a b a b
c d c d c d
e f e f e f

+ + +
+ + +
+ + +

   =     
2 2×

3

4e b+ +

3×
 
 

Theorem (Similarity). Let A and B be similar. Then the following are true. 
 , i.e., A and B have the same characteristic 

polynomial. 
( ) ( )A Bc x c x=

In particular, 
 det detA B=   

and  
 tr trA B= . 
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Proof. Suppose P A , so 1 P B− = 1P AP I B Ix x− − = − , and so P A1 1P P IP B Ix x− −− = − , 
hence P A( )I P B1 Ix x= −− − , and so det ( )1P A I( ) detP ( )B Ix x−− − = , and since  

( )( ) ( )1 1det det det detP A I P P A I Px x− −− = − , 
we are done with . On the other hand by letting , we get . To prove , we use 
the observation above: .  

0x=
)1 1 trPP( ) (tr tr trB P AP A− −= = = A



4

 
 
The converse of the Similarity Theorem is not true. We have that if two matrices are 
similar, then their characteristic polynomials were the same—however, two matrices can 
have the same characteristic polynomial without being similar. To give the simplest 
example, observe that nothing but itself is similar to the zero matrix since for any P, 

. But the matrix  has the same characteristic polynomial as the zero 

matrix without being similar to it. Moreover, note that A cannot be diagonalized because 
if it could be diagonalized it would be to the zero matrix. However, note that A is upper 
triangular matrix already because every matrix is similar to a diagonable. But of course 
the required necessity of having real eigenvalues has to be met. 

1P 0P 0− = 0 1
0 0

A
 =   

 
Theorem (Triangularity). Let A have real eigenvalues. Then there exists 
an invertible (real) matrix P such that  is triangular. By 
necessity, the diagonal entries of T are the eigenvalues of A. 

1P AP T− =

 
A proof of this theorem can be found in the Appendix of Proofs—and a more powerful 
fact will be proven in a following section. However, we can argue the last part of the 
theorem readily: since A and T are similar, by the Similarity Theorem, they have the 
same eigenvalues, and since T is upper triangular, its eigenvalues are its diagonal entries. 
 
Recall that given any polynomial, for example, , and any 

square matrix A, then 
( ) 3 22 3 5p x x x x= + − +

( )Ap  is simply 2 33 2 5 4A A A I++ − . And we have an interesting 
and important consequence of the theorem: 
 
 

Corollary (Polynomials & Eigenvalues). Let ( )p x  be a polynomial. Let 
A be  with spectrum λ , λ ,…,λ  (not necessarily distinct). Let P be 
such that P A  where T is triangular. Then the following are true: 

n n× 1 2 n
1 P T− =

 . ( ) ( )1P A P Tp p− =

 The spectrum of ( )Ap  consists ( )1p λ , ,…, . ( 2p λ ) ( )np λ
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Proof. Easily P . But also since for any matrices 

X and Y and any scalar a, ,  follows. Since  is 

upper triangular with 

( )( ) ( )1 1 1 1A P P AP P AP P AP Tk k

k

− − − −= "
�������������	������������


( )1P X Y P P XPa a− −+ = +

(

=

1 P−1 P Y ( )Tp
)1p λ ( )2p λ ( )np λ, ,…,  along the main diagonal, we also have .  

 
 
The mantra: the eigenvalues of a polynomial are the polynomial of the eigenvalues.  
 
 

Example 2. We saw before that the eigenvalues of  are .35, .50 and .90. 

Thus if we take the polynomial 

.65 .25 0
.3 .60 0
0 .25 .5

A
   =     

2 3( ) 3 4 2p x x= − −

25

  

x x+

( ).35p =

, then when we substitute A, we 

get  that has eigenvalues 1.397875, .625 

and –1.491. 

( )Ap =

( ).9p =

.178 1.313 0
1.576 .0848 0
.019 1.304 .6

− −
−
− −


( ).5p =

 
But there is another way to take advantage of this theorem and its corollary. 
 
 
Example 3. Consider the following symmetric permutation matrix of size : 

. Since its square is the identity, we have that all of its eigenvalues are 

either 1 or − . But the trace is 0 if n is even, so in that case half of the eigenvalues are 1 

and half of them are − . If n is odd, the trace is 1 so then 

n n×
0 0
0 1

1 0 0

           

"
"

# $ $ #
"

1

1
0

1 1

2

n+  of the eigenvalues are 1 

while 1

2

n−

0 0 0 0
0 0 0
0 0
0 1
1




 of them are − . For example,   has spectrum 1, 1, −  and −  

while   has spectrum 1, 1, 1, −  and − . 

1

0 0 0 1
0 0 1 0
0 1 0 0
1 0 0 0

       

1 1

1 1

1
1 0
0 0

0 0 0
0 0 0 0

  

1

 
 
Example 4. Consider the matrix of the Petersen graph,  
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A=

0 1 0 0 1 1 0 0 0 0
1 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 1 0 0
0 0 1 0 1 0 0 0 1 0
1 0 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 1 1 0
0 1 0 0 0 0 0 0 1 1
0 0 1 0 0 1 0 0 0 1
0 0 0 1 0 1 1 0 0 0
0 0 0 0 1 0 1 1 0 0

                              

. 

 
Then by either multiplication, or from the graph theoretic point of view, we can see that 
this matrix satisfies 3AJ JA= = J  (all this means is 3 ones in each row and in each 
column), and more importantly 2 2A A I+ = + J . Equivalently, 2 2A A I+ − = J . But 
multiplying by 3A I− , we get then ( )( 23 2 )A I A−

)2
A I 0+ − = , so if we take the 

polynomial , then we know that the eigenvalues of ( )p x ( )( 23x x x− + −= ( )Ap
( )

 are 

all of the form  where λ  is an eigenvalue of A. But since (p λ) A 0p = , all of the 

eigenvalues of ( )Ap

( )−

2

 are 0, so this means that  for any eigenvalue  of A. In 

other words, the eigenvalues of A have to be roots of . Since 
this polynomial has 3 roots, 3, 1 and − , these must be the eigenvalues of A. In fact, one 
can show that 3 occurs only once as an eigenvalue, and then we can figure out the 
multiplicity of the other two by the trace condition. Let m be the multiplicity of 1 and let 
n be the multiplicity of − . Then we must have that  (since A is 10  and 
one eigenvalue has been accounted for), but we must also have that (because of the trace) 

, and these two equations provide the unique possibility,  and 
, and so the complete spectrum of the Petersen graph is 3, once, 1, a total of 5 

times, and − , four times. Thus its determinant must be . 

( ) 0λ =

( ) (p x x= −

9m n+ =

48

p

2

λ

)( )23 2x x+ −

10×

m=

2

03 1m n+ ⋅ +
4n=

2 = 5

 
 
Observe we could have used a similar technique to find the spectrum of the matrix Jn . 
Since 2J Jn n= n , the eigenvalues of Jn  have to satisfy the polynomial 2x nx= , and so 
they have to be n and 0. Now using the trace condition, we see as before that the 
spectrum is given by , once, and 0, a total of  times. n 1n−
 
 
Triangularity also allows us to prove a famous theorem by two of the early masters of the 
subject, William Hamilton and Arthur Cayley. We need a technical lemma first 
 

Lemma. Let , , …,  be upper triangular matrices of size n. 
Suppose the i i  entry of  is 0. Then . 

1T

−
2T Tn

Ti, 1 2T T T 0n ="
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Proof. By induction on n. If , there is nothing to prove. Assume the theorem holds 

true for . Then  is of the form 

1n=

Tn−"1n− 1 2 1T T
0

0

x
a

   , but , so 

.  
0

B
T

0n

y  =    

1 2T T Tn" 0=



Ii

 
Although the proof that we give requires that the matrix have real eigenvalues, the 
theorem is true in any situation. 
 

Corollary (Cayley-Hamilton). A matrix satisfies its characteristic 
polynomial. 

Proof. By triangularity, without loss, we can assume that the matrix A is upper triangular. 
Let , ,…,  be the list of eigenvalues of A in the order they occur in the main 

diagonal. Let . Then by the lemma, 

1λ 2λ nλ

T Ai = −λ ( ) ( ) 1
1

A A A I T T
n

i n
i=

= −λ =∏ " 0=

3

3

c .  

 

Example 5. Let . Then c x  is its characteristic 

polynomial. Indeed if one computes 

1 2 3
5 4 3
2 1 5

A −
−

   =     
( ) 284 10 10A x x x= + − +

( ) 284 10 10A A I A A A= + − +c  one obtains 0, the 
zero matrix. 
 
 
Now we proceed to the important topic of diagonalization—namely, when is the T 
obtained from the theorem actually diagonal. We already have a fair understanding of 
what is required in order for us to be able to diagonalize a matrix. Namely at the very 
onset of the previous section, we saw that if , then the columns of P are 
eigenvectors of A and the entries of D are eigenvalues of A. Since the columns of P are 
linearly independent, they must constitute a basis, and hence we already can state that  

1P AP D− =

 
Theorem (Diagonability). Let A be . Then A is a diagonable if and 
only if A has n linearly independent eigenvectors, in other words, a basis 
of eigenvectors. If this is the case, and 

n n×

( )p x  is any polynomial, then 

( )Ap  is also diagonable. Moreover, if A is invertible and diagonable, then 

so is 1A− .  
Proof. If , then as we saw before, since 1P AP D− = AP PD=

P A

, we have that every column 
of A is an eigenvector of A, and the converse is just as easy. The second remark follows 
easily since P A  by the theorem. If A is invertible, then none of its 

eigenvalues are 0, and by inverting the equation, we get , and this matrix 
is naturally diagonal.  

( ) ( )P Dp p=1−

1 1P D− − −= 1

 
Note that A and 1A− , as we saw before, have the same eigenvectors since the same matrix 
diagonalizes both. 
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Example 6. Consider the matrix . By visual inspection we see that 

it has rank 1, so its nullity is 4, and so here are four linearly independent eigenvectors for 
the eigenvalue 0. By the row sum condition, another eigenvalue is 3, and we know that 
the vector of all ones is an eigenvector for the eigenvalue 3. The next theorem claims that 
eigenvectors corresponding to different eigenvalues are automatically linearly 
independent, and so we will have 5 linearly independent eigenvectors, hence A will be 

diagonable. Indeed, P  is an invertible matrix whose columns are 

eigenvectors of A, so P diagonalizes A. 

1 2 3 1 2
1 2 3 1 2
1 2 3 1 2
1 2 3 1 2
1 2 3 1 2

A

− −
− −
− −
− −
− −

      =        

1 2 1
0 0 1
0 0 1
1 0 1
0 1 1

  

2 3
1 0
0 1
0 0
0 0

− −= 

 
 

Theorem (Eigenvectors and Independence). Suppose u , ,…,  are 
eigenvectors of A corresponding to different eigenvalues. Then the vectors 

,u ,…,  are linearly independent. 

1 2u ut

1u 2 ut
Proof. By induction on t. It is trivially true if . Assume it is true for t . Assume by 
way of contradiction that , ,…,  are not independent. Then one of them, say , is 
a linear combination of the others: 

1t = 1−
1u 2u ut ut

1 1 2 2 1 1u u u ut ta a a − −= + + +" t

1u

, 
where not all ’s are 0 since u  is not zero. Without loss assume . Let  be the 
eigenvalue corresponding to u . Then when we multiply the equation by  we get: 

ia t

i

1 0ta − ≠
λ

iλ

t

1 1 2 2 1u u ut t t t t t ta a a − −λ = λ + λ + + λ"  
while if we multiply it by A  

ut tλ = 1 1 2 2 1 1Au Au Au Aut ta a a − −= + + +" t 1 1 1 2 2 2 1 1 1u u t t ta a a − − −= λ + λ + + λ" u

1ut t−

 
and subtracting these two equations we obtain: 

( ) ( ) ( )1 1 1 2 2 2 1 10 u ut t t ta a a − −= λ −λ + λ −λ + + λ −λ" . 

But since a , we can solve for u , in terms of u , ,…,u , giving 
us a contradiction to the induction hypothesis.  

( )1 1 0t t t− −λ −λ ≠ 1t− 1 2u 2t−

 
We get a very useful corollary to the theorem: 
 

Corollary (Different Eigenvalues). If A has different eigenvalues, then A 
is diagonable.  

Proof. If we have n different eigenvalues, since we always have at least one eigenvector 
for each eigenvalue, we have n linearly independent eigenvectors.  
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Example 7. Let . Then A is diagonable since its spectrum is 6, 
1 2 3
5 4 3
2 1 5

A −
−

   =     
2 3  

and 

2+

2 3 2− . In fact, if we find an eigenvector for each of the eigenvalues, they will be 

independent. Respectively the eigenvectors are 
1
1
1

    

 , 
1 2

1 2
1

− +

−

      

  and 
1 2

1 2
1

− −

+

     

 . 

 
 
Of course, given , an eigenvalue of A, the nullity of λ A I−λ  is the dimension of 
( )A I−λN , and this is the dimension of the eigenspace corresponding to . The 

dimension of this eigenspace is of relevance for the issue of diagonability. But there is an 
unexpected requirement on this dimension. 

λ

 
Theorem (Multiplicity vs. Dimension of Eigenspace). Let  be an 
eigenvalue of A. Then the dimension of the eigenspace corresponding to 

 is at most its multiplicity in . 

λ

λ ( )Ac x
Proof. Suppose , ,…,u  is a basis for the eigenspace. We need to show then that λ  
has multiplicity at least t. But since this set is linearly independent, we can find an 
invertible matrix P whose first t columns are u , ,…, . Let us then consider the 
matrix , and let 

1u

M=

2u t

1 2u ut
1P AP−

1v , 2v ,…, v t  be the first t columns of M. Then since 
AP=PM  and Aui = λui , we must have that v ei =

I X

0 Y

  

iλ  where  is the iei
th column of the 

identity matrix. Thus M is of the form M , and so the characteristic polynomial 

of A satisfies c x , and our claim is established.  

λ

c

= 

( )Y x( ) ( )x= =(λ− )txA Mc
 
 
Example 8. Suppose a matrix A has characteristic polynomial given by  

( ) ( ) ( ) ( )5 34 3 2Ac x x x x= − − − . 

Then we know that A is , we know its trace 31 and its determinant . 
In particular its rank is 9. But what is the rank of 

9 9× 5 355296 4 3 2=
A I−λ  for a given number λ ? Of 

course, if , then we know the rank is 9. And on the other hand, if λ , 
then the rank is at most 8. But more is known, by the theorem we know that 

4,3,2λ ≠ 4,3,2=
2A I−  is of 

rank exactly 8 since 2 occurs only once as an eigenvalue, so there can only be one free 
variable in the reduced form of 2A I− . Similarly, 3A I−  has rank at least 6 (at most 3 
free variables), and 4A I−  has rank at least 4 (at most 5 free variables). 
 
With this in hand, we have another criterion for diagonability 
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Theorem (Diagonability). A matrix A is diagonable if and only if for each 
eigenvalue λ , the dimension of the eigenspace equals its multiplicity. 

Proof. We have seen before that to be diagonable, what is necessary and sufficient is that 
there be a basis of eigenvectors. But for that basis to exist we have to find enough 
eigenvectors for each eigenvalue. Before we have seen that we cannot have the 
dimension of any of the eigenspaces bigger than the multiplicity, and since the 
multiplicities add up to the size of the matrix, in order to have a basis we must have the 
dimensions equal to the respective multiplicities. On the other hand if the dimensions of 
the eigenspaces equal the multiplicities, then we can pick enough independent 
eigenvectors for each of the eigenvalues, and putting them together will retain the 
independence, and so we will have a basis.  
 

Example 9. Let , then we know its spectrum to be 1, 1, 1, 2, 2 and 

3. Starting with the latter, we see that 

1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2
0 0 0 0 0 3

A

x
y
z
w

u

        =          

0

3A I−  has 5 pivots regardless of what x, y, z, w and 
u are, so its null space has dimension 1, so we will only be able to pick up one 
eigenvector for the eigenvalue 3, confirming the fact that the multiplicity is an upper 
bound of the dimension of the eigenspace.  
 

For the eigenvalue 2, the picture is not as clear,  which 

has a minimum of 4 pivots as expected, but it could have 5, and that is the case if and 
only if . So we will be able to find two independent eigenvectors for the eigenvalue 
2 if and only if .  

1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 1

2A I

x
y

z
w

u

−
−

−

        − =          

0

0

0w≠
0w=

 
Finally, for the eigenvalue 1 we will need three independent eigenvectors, and since we 

have at least three pivots in , in order to not pick up any more 

of them we need , and so the only way A will be diagonable is for 

0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1
0 0 0 0 0 2

A I

x
y
z
w

u

        − =          
0=x y=



 148

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0
0 0 0 2 0 0
0 0 0 0 2
0 0 0 0 0 3

A
z

u

        =          

( )A x

.  

2x x−

Am

(x
( )p x

( )q x

 
But the example above affords us to dig deeper into the notion of diagonability. We 
already have via the Cayley-Hamilton Theorem that every matrix satisfies its 
characteristic polynomial. And a corollary above showed that if the characteristic 
polynomial of a matrix has distinct roots, then the matrix is automatically diagonable, but 
that was not necessary as the identity matrix exemplifies. The polynomial that is crucial 
to diagonability is called the minimum polynomial and that is what we discuss next. 
 
Let A be a square matrix. Since A satisfies a polynomial, there exists a polynomial of least 
degree that A satisfies. There is only one of such lowest degree polynomial that has 
leading coefficient 1. This polynomial is called the minimum polynomial of A and is 
denoted by m .  
 
Example 10. The minimum polynomial of I is 1x− . Also clear is that the minimum 
polynomial of a matrix cannot be of degree 1 unless it is a scalar matrix, i.e., a multiple 
of I. The minimum polynomial of Jn  is 2x nx− . Any nontrivial projection matrix has 

 for its minimum polynomial while any reflection has . 2 1x −
 
 

Theorem (Minimum Polynomial). Let A be  with minimum 
polynomial . 

n n×
( )x

 If )p  is any polynomial that A satisfies, i.e., ( )A 0p = , then 

 is a multiple of m . In other words, ( )A x ( ) ( )A ( )p x m= x q x , 

for some polynomial ( )q x . 

 In particular, c , the characteristic polynomial of A is a 

multiple of , i.e., , for some polynomial 
( )A x

( )xAm ( ) ( ) ( )A Ac x m x q x=

. Thus,  is of degree at most n. ( )Am x
 The set of distinct eigenvalues of A is exactly the set of distinct 

roots of . In other words, a number is an eigenvalue of A if 

and only if it is a root of . 
( )Am x

( )Am x

 The dimension of 2 3, , , ,A I A A A =   … , the span of the powers of 

A, is the degree of the minimum polynomial of A, . ( )Am x
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Proof. The first claim follows from long division of polynomials which states that if 
( )p x  is any polynomial then we can find the quotient ( )q x  and the remainder ( )r x  

when ( )p x

)x
 is divided by . The remainder is always 0 or of degree less than 

. So as with any division, 
( )Am x

(Am ( ) ( ) ( ) (A )p x m x q x r= x+ , so when we substitute A, we 

get ( ) ( ) ( )A ( )A A Aq= Ar+p m , and so if ( )A 0p = , since ( )A A 0=m , we get ( )A 0=r , 

and by our choice of  as being of least possible degree, we get that r x , and 

so 
(Am )x ( ) 0=

( )p x  is a multiple of .  follows directly from  and the Cayley-Hamilton 

Theorem. That every eigenvalue of A is a root of  follows from the fact 
( )Am x

(Am x)
( )A A 0=

)x
m

(Am

 and the eigenvalues of a polynomials theorem. The fact that every root of 

 is an eigenvalue follows from . Finally  follows from the observation that to 

write A k  as a linear combination of lower powers is exactly to find a polynomial of 
degree k and leading coefficient 1 that A satisfies.  
 
 
Example 11. The Petersen Graph Again. Let A be the adjacency matrix of the Petersen 
graph. Then we saw before that A satisfies the polynomial 

( )( )2 23 2 6 5 2 3x x x x x x− − − = − − + . 

Thus, we know 3 22 5 6A A A= + − I , on the other hand it is clear that 2A  is not a linear 
combination of I and A, so the dimension of 2 3, , , ,A I A A A =   …

2 32x x+

 is 3, so indeed the 

minimum polynomial of A is m x , and its roots 3, 1 and −  is a 
complete list of its eigenvalues. Of course, as we saw,  

( )A 6 5x= − − 2

( ) ( )( ) ( ) ( )( ) (5 4 43 1 2 1 2A Ac x x x x m x x x= − − + = − + )3 . 
 
But the reason that minimum polynomials were introduced in this section is because there 
is an intimate connection between them and diagonability. The key theorem is  
 
 

Theorem (Minimum Polynomials and Diagonability). Let A be square. 
Then the following are equivalent: 

 A is diagonable. 
  has no repeated roots. ( )Am x

 There exists a polynomial ( )p x  with no repeated roots that A 

satisfies, i.e., ( )A 0p = .  
 
The proof of this theorem can be found in the Appendix of Proofs. 
 
 
Let us revisit a previous example: 
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Example 9 Revisited. Let . Then we know its characteristic 

polynomial to be ( )

1 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 2 0
0 0 0 0 2
0 0 0 0 0 3

A

x
y
z
w

u

        =          
) ( )3 2 3

0

(1 2x x x−

)3

− −

) (3 22

. Thus we know (and it could easily be verified) 

that ( ) (A I A− − I A I− 0=  regardless of what x, y, x, w and u are.  
 
Thus we have a small list of polynomials that A could satisfy, namely the factors of 
( ) ( ) (3 22 )3A I A I A I− − −  that themselves have the factor ( )( )(2 )3A I A I A I− − − , since we 
need to annihilate all the eigenvalues of A. The following is a list of computations: 
 
( )p x  ( ) ( ) (3 21 2x x x− − − )3 )3 ( ) ( )(31 2x x x− − −  

( )Ap  0 

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

xyzw xyzwu
yzw yzwu
zw zwu
w wu

−
−
−
−

                 

 

( )A 0p =  Always When  0w=

( )p x  ( ) ( ) (2 21 2x x x− − − )3 )3 ( ) ( )(21 2x x x− − −  

( )Ap  

0 0 2 2 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

xy xyz xyzw xyzwu− −                 

0 0 2 2 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

xy xyz xyzw
yzw yzwu
zw zwu
w wu

−
−
−
−

                 

 

( )A 0p =  When either  or  0x= 0y= When either  or  and 0x= 0y= 0w=

( )p x  ( )( ) (21 2x x x− − − )3 )3 ( )( )(1 2x x x− − −  

( )Ap  

20 2 3 0
0 0 2 2 2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

x x y xyz xyzw
y yz yzw yzwu

−
− −

                 

0 2 3 0 0
0 0 2 2 0
0 0 0 0
0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

x xy xyz
y yz yzw

zw zwu
w wu

−
−

−
−

                 

 

( )A 0p =  When  0x y= = When  and  0x y= = 0w=
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And thus we see the minimum polynomial has no repeated roots exactly when A satisfies 
, and that occurs if and only if  and , the same 

conditions for the diagonability of A.  
( )( )(1 2x x x− − − )3 0x y= = 0w=

 
 
We end the section with a process to attempt to find the minimum polynomial of a matrix 
A.  
 
Let A be n , and consider any nonzero vector . Compute the sequence, u , n× u 0≠ Au , 

2A u , 3A u , …. A un , and build the matrix M u . Let k r . 
This matrix has an interesting property—its pivots will be the first k columns. The 
argument is simple, once we have the first nonpivotal column, then all following columns 
are also nonpivotal, for suppose  

( )2A u A un= "Au ( )M=

1
0 1 1A u u Au Ai i

ia a a −
−= + + +" u , 

then  
1 2

0 1 1A u Au A u A ui i
ia a a+
−= + + +" =  

2 1
0 1 2Au A u A ui

ia a a −
−+ + +" + ( )1

1 0 1 1u Au A ui
i ia a a a −
− −+ + +" , 

and so the next column is also a linear combination of the previous columns, and so on. 
Thus . But what is more interesting is that if we consider the polynomial ( )Mi k r= =

k k
k( ) 1

1 1 0p x x a x −
−= a x a− − −" − , then we know ( )A u 0p = , but since this is the 

lowest degree polynomial that will annihilate u, by similar arguments to the ones above, 
we must have that ( )p x  is a factor of m . If ( )A x ( )A 0p = , then we know that 

( )p x ( )Am x= . If not we can consider another vector ( )v M∉ C , and repeat the process, 
until we arrive at a polynomial that A will satisfy. 
 
We need not compute all of M, all we need is rank of it. 
 

Example 12. Let , and let u . Then  and 

, so clearly, 

0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0
1 0 1 0 1 0 1
0 1 0 1 0 1 0

A

         =            

2 12

1
1
1
1
1
1
1

         =            

3
4
3
4
3
4
3

Au

         =            

2

12
12
12
12
12
12
12

A u

         =            

A u u= , and so  is a factor of the minimum 2 12x −
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polynomial. In fact, we can verify that the polynomial 3 12x x−  is the minimum 
polynomial of A, in the sense that it is a polynomial that A satisfies and no polynomial of 
lesser degree exists that A satisfies. By the way, the characteristic polynomial is 

7 512x x−

7 67

. 

u

x − +

2 15x =

108
243
378

            
18 270
15 243
0 0

  

 
Similarly, if we let B J , then easily , and so 4 and 3 which are 
the roots of  are eigenvalues of B. Again the characteristic polynomial is 

7 A= −
7 12x x+

2 12 7B u u B=− +
2 −
512x x . 

 

Example 13. Let . Then ,  and , 

and since the matrix M  reduces to 

1 2 3
4 5 6
7 8 9

A
   =     

=
1 6
1 15
1 24



( ) ( )A Ac x= =

1 6
1 15
1 24

A
        =           

8
15

102

  

2 3x x+ −

6
15
24

A
 
 =
 
1 0
0 1
0 0




108 1728
243 3915
378 6102

A
       =          

det 0A=




108 172
243 39
378 6

18 15x

 , we must have that 

 has to be a factor of the minimum polynomial. But since , we 
must have that m x . 

18x+
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  Symmetric and Orthogonal Matrices 
 
From the algebraic point of view, the relation of similarity leaves little to be desired. If 
two matrices are similar they have the same eigenvalues, characteristic polynomial, 
determinant, trace, and minimum polynomial. What more could one ask for? 
 
From the geometric point of view, however, it is not that satisfying. The following 
examples should illustrate the remark. We consider three matrices that are easily 
understood as geometric transformations, and observe the impact on those matrices of the 

similarity by the matrix P . 1 1
1 0
 =   

 A 
Geometric 

Description 
Unit Square 

Effect 
1P AP−  Unit Square Effect 

 
1 0
0 0
    

 the projection 
on the x-axis 

 
0 0
1 1
    

 

 

 
0 1
1 0
    

 the reflection on 
the  line y= x

 

1 1
0 1−
    

 

 

 
0 1
1 0

−    
 90 −D rotation 

about the origin 

 

1 1
2 1− −

    

 



 
Although we see no disturbance in area or orientation in all 3 examples (since similar 
matrices have the same determinant), we do observe non-uniform changes in both lengths 
and angles. In fact, it is length that is the most crucial of all of these geometric 

parameters. In , P A  sends the vector 
 1 P− 1
1
 

 to the vector 
  (a change in length) while 

the vector 


 goes to the vector 


 (no change). In ,  goes to itself while 


 is 

mapped to 
 , a longer vector. Finally in  both 

  and 
  are mapped to longer 

vectors of different length, the first to a vector of length 

0
2
 

1
0
    

1
0

1
−

0
1


0
1


1
 

1
0
 

0
1
 

5  while the second to a vector 
of length 2 . 


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Naturally from our elementary school day’s experience, we expect that if a 
transformation preserves lengths, then area is also necessarily preserved—not so obvious 
is the fact that once a matrix preserves length, it preserves all geometric quantities 
(except perhaps orientation).  
 
However, we first need to revisit orthogonality of vectors. Let u and v be vectors. Then, 
as we saw before, u and v are perpendicular, or orthogonal, denoted by u v⊥ , if 
u v⋅ = u vΤ = 0. 
 
In general, a set of vectors is said to be orthogonal (or mutually orthogonal) if each 
one of them is perpendicular to all the others. A set of orthogonal unit vectors is called an 
orthonormal set.  
 
 

Theorem (Orthogonal Sets). Let , ,…,u , and consider 1u 2u t
n∈\

( 1 2 )A u u ut= " . Then u , ,…,  form an orthogonal set if and 

only if 
1 2u ut

A A DΤ = , a diagonal matrix. In particular, if the vectors are all 
nonzero, and orthogonal, they are necessarily independent. Moreover, they 
will be orthonormal if and only if A A I= t

Τ . 
Proof. We have seen before that for any matrix A, the  entry of ,i j− A AΤ  is the dot 
product of the ith and jth columns and so the main claim follows immediately. Since if the 
vectors are nonzero, D is an invertible matrix, we have an independent set, and the 
orthonormality claim is obvious.  
 
 

Example 1. Consider the vectors u ,  and  in , and the 5 3  

matrix 

1
1

2
0
0

−
−
      =        

1
1
1

3
0

v

−
−
−

      =        

1
1
1
1

4

w

−
−
−
−

      =        

5\ ×

( )A u v w= . Then, easily, A AΤ =
6 0
0 12
0 0



0
0
20

  
, and so the vectors form an 

orthogonal set. They do not form an orthonormal set since the vectors are not unit 
vectors. To accomplish an orthonormal set we would divide each vector by its length, 

1
6
u , 1

2 3
v  and 1

2 5
w  form such an orthonormal set. 

 
 
A set of vectors in a subspace V is an orthonormal basis if they are a basis and 

orthonormal (what else?). The vectors , u=
1
3
5

       
v =

4
3
1

−

−

       
 and w =

18
19
15−

       
 form an 
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orthogonal, but not orthonormal basis of . If 3\ ( )A u v w= , A AΤ =
35 0 0
0 26 0
0 0 910

       
. 

To obtain an orthonormal basis from u, v and w, all that is needed is to normalize them, 

that is, to make them unit vectors. Thus, u′= 1
35

1
3
5

       
, v ′= 1

26

4
3
1

−

−

  


 and w ′= 1

910

18
19
15−

       
 

form an orthonormal basis of . 3\

n →\
n×n

n∈\

( )Pu u

, ∈\

n\

n

( )u v ( ), ,P uf

( )0 = ( ),u vd = u v−

( ) ( ) ( ) ( ) ( )( ), ,P P P P Pu v u v u v P u v Pu Pv u vd f d f f= − = − = − = − = uf − vf =

u u uΤ= =

1 2u

2 2u uΤ+ =

u u− −

 
 
The theorem is fundamental: 
 

Theorem (Orthogonal Matrices). Let P be  and consider the 
transformation . Then the following are equivalent: :Pf \n

 Pf  preserves lengths, i.e., for any vector u , the length of its 

image is the same as its length,  f=

 Pf  preserves distances, i.e., for any vectors u v , the distance 
between their images is the same as the distance between the two 
of them. Namely, if we let d  denote the distance between u 

and v, then . 

( ,u v

(P v)( )d d f=

)

   P P IΤ =
 The columns of P form an orthonormal basis of . 

Moreover, if this is case, then Pf  also preserves angles and volumes. 
Proof. The equivalence of  and  is clear from the theorem above. If  is true, then 
since ( ),u 0d u= , and ,  follows. Conversely, since Pf , if  
holds, then  

0

( ) ( )
 

so  holds. Assume  holds, then for any u, 
( ) ( )2 2 2

P u Pu Pu Pu u P P uf Τ Τ Τ= = =  

and we have . Finally assume  (and ), and let P u . Now since 

, 

( )un= "

1

1
0

0

P uf

       =           
# 1 1u = , and similarly for the other columns. Now we show u , and 

that will suffice. We know that 

1 u⊥ 2

( )1 2,u ud = 2  by , and so  

( ) ( )2
1 2 1 2 1 2 1 1 1 2 2 12 u u u u u u u u u u u u

Τ Τ Τ Τ= − = − − = − −  

1 2 2 1 1 21 1 2u u u uΤ Τ + = − ⋅2  
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and so u . Now we show that 1 u⊥ 2 Pf  also preserves angles and volumes. The latter is 
simple: since P P , , so volumes are preserved. To preserve angles it 
suffices to show it preserves dot products, but u v , and 
we are finished.  

IΤ = det 1P=±
( ) ( )u v u P Pv u vP Pf fΤ Τ Τ⋅ = = = ⋅

 
A  matrix P is called orthogonal if it satisfies the conditions of the theorem. 
Equivalently P is orthogonal if P . Observe the unfortunate nomenclature of 
orthogonal matrix, yet it is not enough that its columns form an orthogonal basis, it is 
necessary they form an orthonormal basis. 

n n×
1 P− = Τ

Τ
 
Example 2. From both the algebraic (since P ) and the geometric points of view 
(since 

1 P− =
Pf  is just renaming coordinates), every permutation matrix P is an orthogonal 

matrix. 
 
Note that for a square matrix,  if and only if PP , so as a trivial algebraic 
consequence, we get an unexpected geometric fact: 

P P IΤ = IΤ =

 
Corollary (Orthogonality of Rows). A square matrix is orthogonal if and 
only if its rows form an orthonormal basis. 

 

Example 3. By the example, and the theorem, P=

181 4
35 26 910

3 3 19
35 26 910

5 11
35 26 910

−

−−

          
5

 is an orthogonal 

matrix but again the matrix A=
1 4 18
3 3 19
5 1 15

−

− −

       
 is not orthogonal although its columns 

form an orthogonal set. Note that the rows of P are indeed an orthonormal basis for \ , 

in a nontrivial way. For example for the first two rows, we get: 

3

3 12 342

35 26 910
0− + =

333

. On the 

other hand the rows of A are not orthogonal at all: . 3 1− 2 342+ =
 
 
Trivially, the product of orthogonal matrices is orthogonal since  

( ) ( )1 1 1PQ Q P Q P PQ
− Τ− − Τ Τ= = = . 

 
The next stage of development is an algorithm on how to build an orthogonal set from 
any given set of vectors. Remember, as we saw before, it is trivial to go from an 
orthogonal set to an orthonormal one by simply dividing by the lengths of each vector.  
 
One of the advantages of orthogonal sets is that if an element is written as a linear 
combination of them, then the components are the projections along each of the 
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individual vectors. The geometric picture is very clear, if we have an orthogonal set, then 
we have a square box, so a vector is just the sum of the lengths along each of the edges. 
 

Lemma. Let u , ,…,  be nonzero orthogonal vectors. Let 1

2

2u ut
n∈\

1 1 2v u u ta a= + + +" uta . Then v u
u u

i
i

i i

⋅=
⋅

a . 

Proof. Consider v ui⋅ , and since all but one of the terms disappears, we are done.  
 

Example 4. The vectors u , =
1
3
5

       
v =

4
3
1

−

−

       
 and w =

18
19
15−

       
 form an orthogonal basis of 

. To write 3\ x=
x
y
z

       
 as a linear combination of u, v and w, we simply take 

x u va b= + + wc  where 3 5

35

x y z+ +a= , 4 3

26

x y z−b  and −= + 18 19 15

910

x y zc + −= . 

 
 

Theorem (Gram-Schmidt). Let , ,…,u  be nonzero. Then 
there exists an orthogonal set 

1u

1

2u t
n∈\

v , 2v ,…, v t ∈

u u

n\

1 2, ,

 such that [ ] , 

, [ ] ,..., [ ] ]. 
[ ]1 1u v=

[ 1 2, , ,v vt t… …[ ] [ ]1 2 1 2, ,u u v v= [ ]3v1 2 3, ,u u u = 1v 2, ,v ,u v=
Furthermore, the v’s will be nonzero if and only if the u’s are independent. 

Proof. We proceed one vector at a time. We start with 1 1v u= . Certainly [ ] . 
Now, we subtract the projection of u  along 

[ ]1 1u v=

2 1v , and that will of course give us a vector 

perpendicular to 1v , so 2 1
2 2

1 1

u v
1v u v

v v
⋅= −
⋅

, and indeed 2 1v v⊥ . Note 1v 0≠ . Also 

obvious is the fact that [ ] . Note that [ 1v v ]1 2 2, ,u u = 2v 0=  if and only if u  and u  are 
dependent. We now subtract from  its projection along each of 

1 2

3u 1v  and 2v . Thus, we let 

3 1 3 2
3 3 1

1 1 2 2

u v u v
2v u v

v v v v
⋅ ⋅= − −
⋅ ⋅

v

1

, 

and quickly observe that since 2v v⊥  already, we also get , 
so 

1 3 1 3 3 1 0v v v u u v⋅ = ⋅ − ⋅ =

3 1v v⊥ , and similarly 3 2v v

]3
⊥

[ 2, ,v v

. And since already [ ] , we additionally 

get that [ ] . Finally, if 
[ ]1 2, ,v v=1 2u u

1 2 3 1, ,u u u v= 3v 0= , then clearly u , 
and equally for the converse, since we are assuming inductively that 

3 ∈ [ ] [ ]1 2 1 2, ,u u v v=

1v  and 2v  are 
orthogonal, and then the lemma above can apply. We can see that we can continue in this 
fashion, and formally use induction if necessary.  
 
 
Observe that if the u’s are orthogonal to start with, the v’s will be exactly the u’s. 
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Example 5. Consider the following four vectors, , ,  and 

. Then 

1u =

1
1
0
0
0

−             

2u =

1
0
1
0
0

−             

3u =

1
0
0
1
0

−             

4u =

1
0
0
0
1

−             

1 1v u= . Now 2 1
2 2

1 1

ˆ u v
1v u v

v v
⋅= −
⋅

1
1

2
0
0

  
1
1

  

1

2

−
−
= 

2 2
0
0

−
−
= 

, and actually since it is only 

direction we are interested in, we can actually let .  v

Now, for the third vector, we need to subtract two projections, 1 1
3 3 12 6 2v u v= − − v , and 

we get 3

1
1

1
1

3 3
0

v̂

−
−
−

      =        

, and again we can let . Finally, 3

1
1
1

3
0

v

−
−
−

      =        
4 34 1 4 2

4 4 1 2
1 1 2 2 3 3

u vu v u v
3v u v v

v v v v v v
⋅⋅ ⋅= − − −

⋅ ⋅ ⋅
v , 

 and computing, we get 4v = 1 1 1
4 1 22 6 12u v v− − − 3v , so 4

1
1

1
1

4 1
4

v̂

−
−
−
−

      =        

, so again we can let 

. We are finished finding an orthogonal set.  4

1
1
1
1

4

v

−
−
−
−

      =        
To develop an orthonormal set, all we need is to divide by the lengths of each of the 

vectors. Thus from 1v =

1
1
0
0
0

−             

, ,  and , we get the following 2

1
1

2
0
0

v

−
−
      =        

3

1
1
1

3
0

v

−
−
−

      =        

4

1
1
1
1

4

v

−
−
−
−

      =        
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orthonormal set 1w = 1

2

1
1
0
0
0

−             

, 2

1
1

1
2

6 0
0

v

−
−
      =        

, 3

1
1

1
1

12 3
0

v

−
−
−

      =        

 and 4

1
1

1
1

20 1
4

v

−
−
−
−

      =        

1
1
1
1

4

−
−
−
−

             

0
0
4

  
(

. 

n\

N

2
1
1

−
−
−

  

1
1
0
0
0

−          

1
0
0
0

−





 
 
The previous algorithm will be crucial to our ultimate pursuit in this section—the 
question of orthogonal similarity. The next segment will not be so relevant, but for 
completeness sake, it will be discussed. The issue is to complete an orthogonal set to 
an orthogonal basis of . An example will illuminate thoroughly. 
 

Example 6. Consider the vectors ,  and . Can we complete 

these 3 orthogonal vectors to a set of 5 orthogonal vectors? Clearly to find vectors that 
are perpendicular to all three vectors, all we need to do is find the null space of the matrix 

that has these for its rows. Thus, if we let , we need 

1
1

2
0
0

u

−
−
      =        

A

1
1
1

3
0

v

−
−
−

      =        

1 1
1 1
1 1

− −
− − −
− − −



w=

0
3

1 1−

2
1= )A . Since 

, its nullity is 2. The reduced form of A is ( ) 3Ar =
1 1
0 0 1
0 0 0

0 0
0
1



 , so   and   is a 

basis for 

2
0
1
1
1

  




( )AN . These two vectors are orthogonal to all three of our previous vectors. 
However, they are not perpendicular to each other! But Gram-Schmidt comes to our 

rescue—we obtain   and   when we run the two vectors through the process. And 

now we do have 5 orthogonal vectors in . 

1  

1
1
1
1
1

  
5\

 
We have basically shown: 
 

Corollary. Every orthonormal set can be extended to an orthonormal 
basis. Equivalently, if u , ,…,u  are orthonormal, then there 
exists an orthogonal matrix P such that its first t columns are the u’s. 

1 2u t
n∈\
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Thus starting with 1
6
u , 1

12
v  and 1

20
w  from the previous example, we could obtain the 

matrix 

1 1 1 1 1
6 12 20 2 5
1 1 1 1 1
6 12 20 2 5

2 1 1 1
6 12 20 5

3 1 1
12 20 5

4 1
20 5

0

0 0

0 0 0

− − − −

− − −

− −

−

        =          

P . 

 
 
The previous example illustrated once again the power of null spaces and linear systems. 
We take the opportunity to give a different and newer application of these ideas. We will 
be doing arithmetic mod 2, or in , as is known in the mathematics world. Basically we 
only have two scalars 0 and 1, and the only unexpected fact is that 1 1  (we are in a 
2-hour clock). 

2]
0+ =

 
Example 7. In the 1950's, when computers were rather primitive and unavailable, the 
staff at AT&T used weekends to run many of their programs. A constant source of 
irritation to many of them was returning on Monday and finding out their program hadn't 
run, not because there was some mistake in it, but because the computer had misread 
some digit some time during the running of the program. It was at this juncture that 
Hamming (of the Hamming distance) decided to add some redundancy bits to their 
transmission. Of course there were many options: parity checks of any length. The 
advantage of a parity check scheme is that it is very economical—one redundancy bit for 
any number of meaningful bits that one chooses. The problem with a parity check is that 
although it is good at detecting one error, there is no way of decoding that one error, of 
correcting it. Hamming came up with a very ingenious code named after him. 
 

The idea was simple, start with the null space of the matrix  (all 

mod 2), and the matrix may look a little mysterious, but its columns are simply the 
numbers 1 through 7 written in base 2. Since we can see three pivots, we have full row 
rank, so its null space has dimension 4, and its null space is given by (if we solve for the 
pivotal as they are and recall that 1 1): 

0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

M
   =     

=−

3 5 6 7

1 1 0
1 0 1
1 0 0
0 1 1
0 1 0 0
0 0 1
0 0 0

x x x x

                                          + + +                                                        

  

1
1
0
1

0
1



 

and since each of the scalars can take 2 values, there are a total of 16 code words in the 
Hamming code. They are (given without parentheses) 



 161

0
0
0
0
0
0
0

               . 

1
1
1
0
0
0
0

1
0
0
1
1
0
0

0
1
0
1
0
1
0

1
1
0
1
0
0
1

0
1
1
1
1
0
0

1
0
1
1
0
1
0

0
0
1
1
0
0
1

1
1
0
0
1
1
0

0
1
0
0
1
0
1

1
0
0
0
0
1
1

0
0
1
0
1
1
0

1
0
1
0
1
0
1

0
1
1
0
0
1
1

0
0
0
1
1
1
1

1
1
1
1
1
1
1

 
And at first the virtues of the code are hidden. But the idea is to use only these as possible 
words to communicate, so there are 16 possible messages. Suppose now that a word is 
received (I actually flipped a coin to come up with this word): 1010011. Then 
without concern of whether an error was committed in the transmission of the message, 
one multiplies the received word by the matrix M, if one gets 0, then the word is a code 
word, and so one accepts it as the sent message. But if not, then we know that as what 
was sent was w which satisfies Mw , assuming only one error was committed, then 
what we received was the word, 

0=
w ei+

1
0
1
0
0
1
1

                    

 where  is one of the columns of the identity. 
But , and since this is just the i

ei

0
1
1
0
0
1
1

                    

( )M w e Mei+ = i
th column of M, we can correct the error. 

Thus, in our specific case, we have M , and since this is the number 3 in base 2, 

we know the error occurred in the third position, so the corrected message is  , one of 

our code words indeed, and one can also verify that is the only word that could have been 
sent where only one error occurred. Of course we could have seen this example as the set 

of vectors orthogonal to the three vectors,  , , , the rows of M. Note that these 

three are words in the code, so that in fact each of them is perpendicular to itself, as well 

0
1
1

   =     

0
0
0
1
1
1
1

                 

1
0
0
0
0
1
1

                 

1
0
1
0
1
0
1

                    
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as to the other two: . This could not have occurred if we had been dealing with 
real scalars. 

MM 0Τ =

µ

1 1 1u u= λ

2
Τ Τ = λ

( )2 1u A uΤ

1 5
5 1
 =   

4

( )A

( )a c+ ±

 
 
We now continue to the fundamental theorem of the section. We show that every 
symmetric matrix is not only diagonable, but the diagonal matrix can be achieved 
via an orthogonal matrix—thus not only the algebraic properties of the symmetric 
matrix are preserved, but also the geometric ones. Before we prove the fundamental 
theorem, we will need three lemmas. 
 
We saw before that eigenvectors of any matrix corresponding to different eigenvalues are 
independent. For a symmetric matrix much more is true. 
 

Lemma (Orthogonality of Eigenvectors). Let A be symmetric. Suppose 
u and v are eigenvectors of A corresponding to eigenvalues λ  and , 
respectively. If λ ≠ , then .  

µ
u v⊥

Proof.. Now A  and 2 2 2Au = λ

2 2uΤ

u 2, and . By transposing the second 
equation we get u A , but since 

1λ ≠λ
A AΤ= , we have u A . Now 

, and so we can conclude u u .  
2 2u
Τ = λ

0=
2
Τ

( )1Au= =1 2 1 2u u uΤ Τλ 2 2 1u uΤ= λ 2 1
Τ

 

Example 8. Let . Then one eigenvalue is 6 with eigenvector 
 

A
1
1
 

 while the 

other eigenvalue is −  with eigenvector 
 1

1−
 

. 





2

 
Remarkably, any symmetric matrix has real eigenvalues. The 2  case is simple: if 

we let , then c x , and the roots of this quadratic 

are given by 

2×

A
a b
b c

 =   
( )2ac b a c x x= − − + +

( ) ( )2 24

2

a c ac b+ − −
x= , but the discriminant is ( )  

which is clearly positive, and so the equation has real roots. To prove this in full 
generality would require more exploration of the complex numbers, so we state the result 
with a proof in the Appendix of Proofs. 

2 24a c b− +

 
Lemma (Real Eigenvalues). Let A be a real symmetric matrix. Then A has 
real eigenvalues. 

 
 
The last of the three lemmas is the most fundamental. We saw before that any real matrix 
with real eigenvalues was similar to an upper triangular matrix. Now we prove something 
more powerful—the similarity can be accomplished via an orthogonal matrix! 
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Lemma (Schur’s Lemma). Let A have real eigenvalues. Then there exists 
an orthogonal matrix P such that , an upper triangular 
matrix. 

1P AP P AP T− Τ= =

 
The proof can be found in the Appendix of Proofs. 
 
Putting the lemmas together we obtain the major theorem of the section: 
 

Theorem (Spectral Theorem). Let A be a symmetric matrix. Then there 
exists an orthogonal matrix P such that P A , a diagonal 
matrix. 

1 P P AP D− Τ= =

Proof. The only thing needed is to show that we actually obtain a diagonal matrix out of 
Schur’s Lemma. But then from the fact that A is symmetric, and P A , we 
immediately get that T is symmetric, and since it is upper triangular, it means it is 
diagonal.  

P TΤ =

 
 
Example 9. Let 5A J=

1
1
1
1
1

          

. Then previous examples have already done all the work. The 

eigenspace for 0 is 4-dimensional with basis u , ,  and 

, while   is an eigenvector for 5 (note the perpendicularity among the 

eigenspaces), so using Gram-Schmidt, we get, as before, 

1 =

1
1
0
0
0

−             

2u =

1
0
1
0
0

−             

3u =

1
0
0
1
0

−             

4u =

1
0
0
0
1

−             
1 1 1
2 6 12 20

1 1 1
2 6 12 20

2 1
6 12

3
12 20

20

0

0 0

0 0 0

− − − −

− − −

− −

−

= 

1 1
5

1 1
5

1 1
20 5
1 1

5
4 1

5

  

P . 

 
 

Example 10. Let A=

7 5 8 2
5 31 40 10
8 40 70 16

2 10 16 10

−
−

− − −
−

           

. Then since all rows add to 6, this has to be 

an eigenvalue. Looking for its eigenvectors, we are concerned with ( 6 )A I−N  and since 
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1 5 8 2
5 25 40 10
8 40 64 16

2 10 16 4

6A I

−
−

− − −
−

     − =       

 has rank 1, 6 occurs 3 times as an eigenvalue. By the trace, 

the other eigenvalue is 100. An eigenvector for 100 is  . Looking for eigenvectors for 

6, we get the null space 

1
5
8

2
−

       

( 6 )A I−





N

1
1
1
1

           

1
1
1
1

       

4
2
1
1

−       

 to have basis  ,  and  . But suppose we 

wanted  to be part of the basis, then we could use  ,   and   (we have many 

other choices, this was done arbitrarily). Applying the Gram-Schmidt process to these 

three vectors, we get  ,   and  . So our orthogonal diagonalizing matrix is 

5  

8
0
1
0


1
1
1
1

       





1
0
0

−



  

1
0
0

−

2
0
0
1

−       
2

0
0
1

− 

 

5  



5
25
7

37

−
−
−

  
51 4

2 22 2 517

251 2
2 22 2 517

1 1
2 22 2 517

371 1
2 22 2 517

−−

−

− −



1
94

5
94

7 8
94

2
94

  

P= . 

 
 
 
One of the original interests in eigenvalues was motivated by the study of the conic 
sections in the plane, and so we appropriately end the course with a thorough discussion 
on them. 
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On Conics 
 
We all know that the general linear equation ebyax =+  is the algebraic representation of 
a straight line. What is the next level of complexity? For over two thousand years, 
humanity has been interested in quadratics (the next level). What is the most general 
quadratic equation on x and y? Simply 

feydxcybxyax =++++ 22 2  
where not all of the coefficients are 0. The reasons for the doubling of the coefficient of 
xy will become clearer below. And for many generations this was the way this equation 
was viewed. But we now have matrices at our disposal, and so we have more powerful 

notation at our disposal. If we let =M
a b
b c
    

, and if we let c  and = d
e
    

z= x
y

    
, then our 

quadratic equation simply becomes  
z Mz z c fΤ Τ+ =  

(this is the reason for the 2 in the coefficient). Even more succinctly, we let ( ), ,M c fC  
denote the set of solutions to the equation. This set of solutions is called a conic—
although some do not quite fit our idea of such a curve due to very special cases. As we 
will see below, the matrix M plays the major role in identifying the curve.  
 
Note that M is a symmetric matrix, M . Since for any nonzero scalar a, MΤ=

( ), ,M c fC ( ), ,M ca a af= C , 
we have some freedom in choosing the M. In particular, we can always choose the matrix 
M so that . tr 0M≥
 
 
Examples. Mostly expected, but some unusual. 

 If M , we get a linear equation, so we have a straight line. Thus linear 
equations are special cases of the quadratic. 

0=

 

 Consider the equation . Here M  and . 

This is the union of two lines, the line 

2 2 0x y− = 1 0
0 1−
 =  

 0 0, c= f =

x y=  and the line x y−= . 
 Changing to f =  produces a hyperbola : 1 2 2 1x y− =
 

 When M ,  and , we get the equation  which represents 

two parallel vertical lines,  and . 

1 0
0 0
 =   

c 0= 1f =

1

2 1x =

x= 1x=−

 While if we change to , we get the equation , which represents 

a parabola: 

0
1

c
−
 =   

2 1x y− =
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 When M , the identity, c  and , we get the unit circle:  I




1

= 0= 1f = 2 2 1x y+ =
 while changing to  will produce , a single point,     and 

decreasing f further will empty the collection altogether. 
0f = 2 2 0x y+ =

 On the other hand changing the original to M , will produce the equation 

 which represents an ellipse. 

1 0
0 4
 =  

2 24x y+ =
 
 
Points are said to be collinear if they lie on a line. Of course from previous work, we 

know that points i

i

x
y

    for i  are collinear if and only if   has rank at 

most 2. 

1,...,=

1 1

2 2

1

1

1t t

x y

x y

x y

−

−

−

          

 t

 
We know that two points determine a line, but five points determine a conic. 
 

Theorem (Five Points). Any five points lie on a conic. Moreover, the 
conic is unique if and only if no four of the points are collinear. 

Proof. Let i

i

x
y

  

1

2

3

4

5

x x
x x
x x
x x
x x

  for i  be 5 different points in the plane. Consider the 5  matrix 

. In order to find a, b, c, d, e, and f, we need to solve 

1,...,5=

1 1

2 2

3 3

4 4

5 5

2

y x
y x y
y x y
y x y
y x y

6×

2 2
1 1 1
2 2
2 2 2
2 2
3 3 3
2 2
4 4 4
2 2
5 5 5

2 1
2 1

2 1
2 1

A

y y
y
y
y
y

−
−
−
−
−

        =         
Ax 0= , which is a homogeneous linear system of 5 equations on 6 unknowns. Since the 
rank is at most 5, there is a nontrivial solution. The conic will be unique if and only if the 
rank is 5. The proof that the rank is 5 exactly when no four points are collinear can be 
found in the Appendix of Proofs. 



1

 

Example 1. We find the conic that goes through the points,


, , 
 0

0


0
1
    

1
1
 
, 


 and 


. We 

need to solve the homogeneous system 

0
2


4
0


Ax 0=

0

 where A is  , which 

leads to the equation . The parameters 

0 0
0 0
1 2
0 0
6 0 0

, ,M c

0
1
1
4

( )

0
0
1
0
4 0

0
1
1
2

1

−
−
−
−
−

 

 

1
1
1
1
1






2 3 4x xy x+ − = fC  are M , 1 1.5
0

  1.5
= 


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4
0

c
− =   

 and . This is the union of two lines:  and . 0f =

24

0x= 3 4x y+ =

1
0


2
5


1
2


Ax 0=

1
1
1
1
1

−
−
−
−
−

  
75
12

M =  c
−
−

= 

2× x Ax+
( ),A b x Ax b= +

b 0= ,A bF =

A I=

(M c )

,A 0

 
 

Example 2. Similarly the conic that goes through the points, 


, 


, 


, 


 and 


 is 

given by , obtained by solving the system 

3
3


4
0


2 275 2 375 28 300x xy y x y+ + − − =−

 where A is given by  . The parameters 

1 0 0 1 0
4 20 25 2 5
1 4 4 1 2
9 18 9 3 3

16 0 0 4 0




( ), ,M c fC  are 

,  and . We will see below this is an ellipse. 12
2

  
375
28

  
300f =−

 
 
The acute reader will have observed that in the list of examples above, all the M’s listed 
were diagonal matrices, and indeed from the geometric points of view that is all that is 
needed—that is what we settle next. 
 
We have seen before the transformations Af  for a given matrix A. We extend the idea by 
inserting a translational component into the function. 
 
Let A be a  matrix, and b  any vector, then the function 2 b  is called an 
affine function. We will refer to this function by , so F ,A bF . Of course, if 

, then . We will only be interested in these when A is an invertible matrix, 
and then they are called affine transformations. 

Af

 
Example 3. A simple, yet important, family of affine transformations are called 
translations. For a fixed vector b , the translation by b  is the 
mapping that sends x x b+ . So here the matrix is the identity, 

. Note these transformations preserve distance, angles and 
shape. b
 
 
Suppose we are given an affine transformation, , how does it transform a conic such 

as 
,A bF

, , fC ? The following theorem establishes the basic facts: 
 

Theorem (Affine Transformations & Conics). Let A be an invertible 
matrix and let b be any vector. Then  

  where  ( )( ) ( ), , , ,M c N dF f =C C f
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( )1 1N A MA
Τ− −=  and . ( )1d A

Τ−= c

)g

)h

b

)

  where  ( )( ) (, , , , ,I b M c M eF f =C C

2e c Mb= −  and . b c b Mbg f Τ= + ⋅ −
 So combining  and , we get 

  where  ( )( ) (, , , , ,A b M c N kF f =C C

( )1 1N A MA
Τ− −=

h f= +

,  and 

. 

( )1 2k A c N
Τ−= −

( )1b A c b Nb
Τ− Τ⋅ −

 
The proof of this technical result can be found in the usual Appendix of Proofs. 
 

Example 4. Consider the unit circle,  with equation . Let( , ,1I 0C 2 2 1x y+ = 1
2

1 0
0

A
 =   

 

and . Then 1
3

b
− =    , 1

2

1

3A b

xx
yy

F
−
+

   =    
   ,I b ,A 0

x
y

    
F F= . By the theorem the image of the 

unit circle, the points 1
2

1

3

a
b
−
+

    where  will all lie in and fill the conic 

 where  

2 2 1=a b+

( ), ,N k hC



( )1 1N A MA
Τ− −= 1 0

0 4
 =   

,  ( )1 2k A c Nb
Τ−= − = 2

24−
    

and h f . ( )1 36b A c b Nb
Τ− Τ= + ⋅ − =−

And this conic has equation . Indeed,  2 24 2 24 36x y x y+ + − =−

( ) ( ) ( ) ( )22 1 1
2 21 4 3 2 1 24 3a b a b− + + + − − + =  

2 22 1 12 36 2 2 12 72a a b b a b− + + + + + − − − = 1 1 36 2 72 36+ + − − =− . 
 
Since this transformation changed scales in one axis we should not be surprised the result 
is an ellipse. 
 
 

But note the crucial observation, the change in the matrix is , and 
this is a similarity only when the matrix A is an orthogonal matrix. It is these that we are 
particularly interested since these will not change distances and angles, and if we always 
choose the determinant to be positive, they will not change orientation either—in fact, 
any such matrix is a simple rotation. But by the Spectral Theorem we know that any 
symmetric matrix can be diagonalized by an orthogonal matrix (and we can always 
choose the determinant to be 1), so we know that every conic section can be rotated to 
one where the matrix is diagonal, and we have begun to understand all conics.  

( )1 1M N A MA
Τ−= −
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First we need a technical fact about eigenvalues and eigenvectors of matrices: 
 

Theorem (Eigenvectors). Let M  be a 2  symmetric matrix. 

Let . Then the eigenvalues of M are 

a b
b c
 =  




2×

( )2 24d a c b= − + ( )1
2 a c d= + +λ  

and (1
2 a c dµ = + − )  with corresponding eigenvectors: u=

2

a c d

b

− +     
 

and v =
2b

a c d

−

− +

    
. Moreover, 

( )( )
(

d
)v1

d a c−

0
0
λ
µ



2 +

P
 =  

P u  is an 

orthogonal matrix of determinant 1, and P M  

=

Τ

Proof. It is straightforward to verify that . By trace considerations, the other 
eigenvalue is µ . Clearly , so it must be the case that Mv . Now, 

Mu u= λ
u v⊥ v=µ

( )( )2 d a c d+ −  is the length of both u and v, so the columns of P form an 

orthonormal basis, so P is an orthogonal matrix such that P M . All that 

remains is to show that P has positive determinant—but that follows from the fact 

0
0
λ
µ

    
PΤ =

d a c≥ − .  
 
Note that since P is orthogonal of determinant 1, P has to be a rotation of the form 

. Can we describe  in terms of M ? Obviously 
cos sin

sin cos
Pθ

θ − θ

θ θ

 =   
θ a b

b c
 =   

2tan b
a c d

θ=
− +

, and although that expression is not that friendly, if one uses the fact 

from trigonometry, 2

2 tantan 2
1 tan

θθ=
− θ

, one arrives at the more recognizable 

2tan 2 b
a c

θ=
−

. 

 
As an immediate consequence we get  

Theorem (Diagonability). Consider an arbitrary conic ( , ,M c )fC  where 

. Let N  where  and µ  are the eigenvalues of M. Let 

 satisfy 

M
a b
b c
 =  

θ







0
0
λ
µ

 =   λ

2b
a c

=
−
,A 0F

ta

−θ

n 2θ . Then if A denotes the rotation about the origin by 

angle . Then  will transform ( , ,M c )fC  into ( , ,N d )fC  where 

. ( )1d A
Τ−= c
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In reality, we do not need to find θ  by the expression 2tan 2 b
a c

θ=
−

1

 since it is really 

coming from the eigenvectors of M. Note that A P=
1−

−  where P is the orthogonal 

diagonalizing matrix for M since N A .So we could have another version of 
the above theorem. 

( )1 MA
Τ−=

 
Theorem (Diagonability II). Consider an arbitrary conic ( ), ,M c fC  

where . Let  where  and  are the eigenvalues of 

M. Let u be a unit eigenvector for , and v a unit eigenvector for µ . Let 
. Then  will transform 

M
a b
b c
 =   

( )v

0
0

N
λ
µ

 =  

0


 λ µ

( )
λ

P u=
,P

F Τ , ,M c fC  into (N d ), , fC  where 

. d P= cΤ

 

Example 5. Consider the quadratic . Here , 

 and . The eigenvalues of M are 2 and 0 with respective eigenvectors 


 

and 


. Thus we know  is  and 

2 22 8 8x xy y x y+ + + − = 0




1 1
1 1

M
 =   

1
1


8
8

c
−
 =  

1
1
− 

0f =

θ 45 1 1 1
1 12

− =   
P . Hence  

1A P P− Τ= = 1 1 1
1 12 −

 =   
. 

We have then , and d A
2 0
0 0

N
 =  


 ( )1 c Ac

Τ−= = = 1 0
162

−     
, so the equation for ( ), ,N d fC  

becomes 2 16

2
2x y− = 0 , or equivalently 22

8
y= x

45

I

I

, which has the parabolic shape, 

and since this graph was obtained by rotating by − , the original 
parabola was shaped as (recall all rotations are counter-clock-wise): 
 
 
We have been rather unconcerned about dividing by 0 in the algebra above. We now 

address all situations. Throughout we let M . a b
b c
 =   

0≠

 
Example 6. The case M . The only time  is zero occurs when M is 
a scalar matrix, and since we can always multiply by a scalar, we can assume M . If 
this is the case, let 

= ( )2 24d a c b= − +
=

1
2b c= . By Transformation Theorem,  

where 
( )( ) ( ), , ,I b I cF f =C C , ,I 0 g

1
4 cg f= + ⋅c , and this is either a circle ( ), a point ( ) or empty, 

otherwise. 
0g> 0g =
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Example 7. The case det . We have 0M= ( , ,M c )fC  with . Without loss, 
since we can always multiply by a scalar, we can assume the eigenvalues of M are 1 and 
0. Let u be a unit eigenvector for , and v a unit vector in the null space. Let 

. Consider P c . Let 

det 0M=

1λ=

(P u v= ) m
n

Τ  =   
1
2 0
m    

b . Then 

where , 

= ( )( ) ( ),
, ,

P b
N kΤ =C C  , ,M cF f h

1 0
0 0
  

N = 
21

4 m= +h f  and k P . Thus the equation 

simply becomes 

0
n n

 =   0
m m   −     

2c Nb
 

− =
 

Τ=

2 21
4x ny f m+ = + . 

Two cases occur then, one when , which is tantamount to , or 

equivalently, , and then the equation simply becomes 

0n= ( )P c NΤ ∈C

( )c M∈C 2x h
0n≠

= , and this will 
represent either two parallel vertical lines, or a point, or an empty set. Second, , and 
then we can see the equation as a parabola, depending on the sign of n: 
 

Example 8. Consider 4 4 . Here M , which has 

determinant 0 and since , we know we will have two parallel lines. On 

the other hand, the equation  will represent a parabola. 

2 2 6 3 1x xy y x y− + + − =

( )6
3

c M
−
 = ∈  

C

2 24 4 5 3x xy y x y− + + − =

2



2

)

4 2
2 1

−
−
 =  

1
 
 
We are left to consider the situation when M is invertible (not the identity) and so its 
eigenvalues are nonzero, and different.  
 
 
Example 9. The case . We have det 0M≠ ( , ,M c fC  with . Let  and  be 

its eigenvalues. Let u, v, P, and N be as usual. Let 

det 0M≠ λ µ
1−1

2 PΤb N . Then 

, and 

c

h

=

( )( ),
, ,

P b
M cF fΤ =C ( ), ,N 0C 1b N Mh f Τ Τ Τ1

4b cf= +b P c= + ⋅ − c− . So our 
equation reduces to one of the form  

2 2x y hλ +µ =  
and if , then this is either an ellipse, or a point (h ), or empty, while if λ , 
then this is a hyperbola or two intersecting lines ( ). 

0λµ> 0=
0

0µ <
h=

 

Example 10. Consider 2 22 6 5 8 8x xy y x y f+ + + + = . Now  has 2 3
3 5

M
 =   

7 3 5

2

±  for 

its eigenvalues, both positive. Now 11
4 c M ch f Τ −= +

2 f =

 and since M , we have 

. So if  we have an ellipse while  produces a point. 

1−

−
= 

5
3 2

− 
3


2h f= + f >− 2−
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Consider 2 2112 74 3 38x xy y x y f− + + + = . Here 112 37 3

37 3 38

−

−

  =    
M , which has 

clearly positive determinant. The eigenvalues are 149 and 1, so 1
2

3
1

u
−

 =   
 and 1

2 3

1
v

 =   
, 

so 1
2

3 1

1 3
P

−

  =    
. But then 1 1

149
38 37 3

37 3 112
−

  =    
M , and so ( )1

298 75 37 3h f= + + . So if 

(1
298 75 37 3f =− + ) , we have a point, while for any bigger f’s, we have an ellipse (very 

thin). For smaller f’s we have no graph at all. 
 

Consider now 2 29 34 3 43x xy y x y f+ + + + = . The matrix is 9 17 3

17 3 43
M

  =    
 which 

has negative determinant. The eigenvalues are 60 and − , so 8 1
2 3

1 =   
u , 1

2
3

1
v − =   

, so 

1
2

1
3 1

P − =   
3 . But then 1 1

480
43 17 3

17 3 9
− −

−

  =    
M , and so ( )0 26 17 3− +1

96= +h f . 

Thus, when (1
960 26 17 3f = − )

)

, we will have two intersecting lines, and otherwise, we 

will have a hyperbola. 
 
 
In summary, given a conic ( , ,M c fC , except for the improbable cases (a point in the 
ellipse case, two intersecting lines in the hyperbolic case and two parallel lines in the 
parabolic one), the determinant of M specifies the type of curve we will obtain: 
  

• positive determinant, or two eigenvalues of the same sign is an ellipse,  
• negative determinant, or eigenvalues of different signs produces a 

hyperbola,  
• while determinant 0 or  one of the eigenvalues being  zero, we then have a 

parabola. 
 
Finally, we may wonder what occurs to ( , ,M c )fC  when we apply an arbitrary affine 

transformation to it. But we know  where , 

and so det , and since the sign of the determinant does not change, the 
type of curve does not change. 

( )( ), ,M cF f =C (, , ,A b N kC )h

)
( )1 1N A MA

Τ− −=

( 21det detN M A−=
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Appendix of Proofs 
 

 Page 22 
 

Theorem. (Transposes.) Let A be  and let B be n . Then 
. 

m n× p×
( )AB B AΤ Τ Τ=

Proof. The easiest way to prove this theorem is to think of the row-by-column model. Let 

A=

1

2

v

v

vm

Τ

Τ

Τ

            
#

 and B u , then ( )1 2u u p= "

1 1 1 2 1

2 1 2 2 2

1 2

v u v u v u

v u v u v u
AB

v u v u v u

p

p

m m m

Τ Τ Τ

Τ Τ Τ

Τ Τ Τ

      =         

"
"

# # % #
" p

. But then 

( )

1 1

1 2

2 1 1

2 2 2

1 2

v u v u v u

v u v u v u
AB

v u v u v u

m

m

p p m p

Τ Τ Τ

Τ Τ Τ

Τ Τ Τ

  

"
"

# # % #
"

= 

Τ

= 

1 1

2 1

u v

u v

u v

1 2 1

2 2 2

1 2

u v u v

u v u v

u v u v

m

m

p p p m

Τ Τ Τ

Τ Τ Τ

Τ Τ Τ

  

"
"

# # % #
"

 

1

2

u

u

u p

Τ

Τ

Τ

      =       
#
( )1 2v v vm" B AΤ Τ= .  
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Theorem (Upper Triangular Matrices). Let 

11 12 1

22 2

A A A

0 A A

0 0 A

n

n

nn

      =        

"

"

# % % #

"

M  and 

11 12 1

22 2

X X X

0 X X

0 0 X

N

n

n

nn

      =        

"

"

# % % #

"

 be in (block) upper triangular form. Then their 

product is also in (block) upper triangular form. Moreover, the diagonal 
blocks of the product are the respective products of the diagonal blocks. 

Proof. By induction on the number of blocks on the main diagonal. If , there is 
nothing to prove since every 1  matrix is upper triangular. Let us consider the very 

1n=
1×
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special case when . But then from the example above if we take 2n=
A C

0 D

    and 

X Z

0 W

     
, then their product is 

AX AZ CW

0 DW

 +  

11 12

22

A A

0 A

0 0

= 

"

"

# % %

"

 . But we can view M and N as being in 

 form. Namely, let ,  and D , then 2 2×

1 1

2 1

1 1

A

A

A

A

n

n

n n

−

−

− −

  
# 1C A n= Ann=

A C

0 D

  
M =  , and similarly ,  and 

11 12

22

X X

0 X

0 0

= 

"

"

# % %

"

1 1

2 1

1 1

X

X

X

X

n

n

n n

−

−

− −

  
# 1Z X n= W Xnn= , then 

X Z

0 W

  
N =  . And since by induction, AX  is in block upper triangular form, with the 

diagonal blocks as expected, we have proven the theorem.  

A AB I=
1A−=

1n= B= I
AB

1−
APP B I= A AP′= B′= A′ ′

I=B A′ ′
1P BAP−

M=

I= BA I=
1−

21

11

1

11

n

1
a
a

a
a

−−

# I

A′=
1M−B B′= 1A B MABM I−= =

1BM MA BA− =
′ ′

= =1′B A −′= I B
′


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Theorem (One Side Suffices). Let  be square. If , then A  is 
invertible and, as before, B . 

Proof. We are going to proceed by induction (are you surprised?). It is obvious when 
. Assume the theorem holds for smaller matrices, and assume A . If the first 

row of A were all zeroes, then the first row of  would be all zeroes, which is not the 
case. Thus, we know that there is a permutation matrix P such that the 1  entry of AP  
is not zero. Note that 1− , so if we call  and , then 1−B P B I= , 
and so if we prove the theorem for these, then we would have that , and so 

, which implies that , so we would have the theorem. Thus, we can 
assume without loss, that the 1  entry of A is nonzero. Consider the matrix 

-1

0

n

  

. This is a lower triangular matrix with ones along the diagonal, so it is 

invertible. Now let MA  and suppose we show that it is invertible. Then if we let 
, then since , then we would know necessarily that 

, and so , and we would be done. But what is A′ ′
A MA= ? Easily, let us compute the  position of this product (the 1  position is 2−1 1−



 175 

just ). We are multiplying the row 11a 21

11

1 0 0a

a

 −  
"

0=


 by the column  , and so 

we have as an end result − . Similarly, if we compute the 3  position, we 

would be multiplying the row 

11

21

31

1n

a

a

a

a

             

#

121 21a a+ −

31

11

a

a
−

31 0+ =

0 1 0
  

"
 by the column  , and so we have 

as an end result − . Thus 

11

21

31

n

a

a

a

a




#

1

  

31a a A′  is of the form   where C is an 

 matrix. Since , if we can show that C is invertible, then by block 
upper triangularity, we will have that 

11

0

0

a

#

* *  
C

"

( )n ×(1 n− − )1 11 0a ≠
A′  is invertible, and we will be finished. Let 

11 v
B

u D

Τ ′  
CD

b= 
I=

 where D is also ( ) . It would then suffice to show that 

, because then by induction we would have that C is invertible. But we know that 

( )1 1n× −n−

A B′ ′= I , and so by simple block multiplication, .  CD I=

m n×

1n = A 0
A 0≠

nm× ( )1m n× + ( )B A u= A

1m×





 
 
 

 Page 50 
 
 

Theorem (Uniqueness of the form). Let A be an arbitrary  matrix. 
Then A is row equivalent to a unique matrix in row echelon form. 

Proof. By induction on n. If , it is trivial, since if =  that is its unique form while 
if , then by permuting rows if necessary, we can assume the 1-1 position is 

nonzero, and then by pivoting in the 1-1 position, we arrive at the reduced form 

1
0

0

 
 


  
 
#

, of 

size m, and that is clearly unique. Assume now the theorem holds for all matrices of size 
, and let B  be a matrix of size . Let  where  is an m n×  

matrix and u  is . We know by induction there exists a sequence of steps in the 
Gaussian elimination process, which when multiplied together give an invertible matrix 
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P  such that PA , and that the matrix M is row reduced, and hence uniquely 
determined. Note this implies that anytime we reduce B, we will have the M as the first n 
columns. But then we have 

M=

( )PA Pu=PB . Two cases occur, either there is a solution to 
Ax u=  or there is not. Assume first that Ax u=  is not solvable. But then neither is 

, which is . But by the special form of M, we can conclude, by the 
Lemma, that Pu  must have a nonzero entry in a row in which M has all 0’s. Without loss 
we can make this entry a 1. Let t be the number of nonzero rows in M. Then by permuting 
rows below the t

PAx P= u Mx = Pu

th row of M, we can put the 1 in row 1t + , and then by pivoting in the 
position, which leaves M unchanged, we can make the last column be 1,t n+ +1−

w =

0

0
1
0

0

 
 
 
 

 
 
  
 

#

#

 , where again the 1 is in row 1t + . Clearly then B is row equivalent to the matrix 

 which is reduced, moreover since the assumption that (M w ) Ax u=  is not solvable is 
independent of all that has occurred, the form is unique, and we are done in this case. 

Ax =
(PA=

=
QA=

u
Pu

QA

)
( )Qu

Qu QAx PAx Pu= = =

n

1 2 t =
i n≤ ≤

i

[ 1 2, ,u u

i
,ut

 
Assume now that  is solvable. But if that is the case, since there are no new pivots, 
the matrix PB  is already reduced, so the only issue is the uniqueness of the 

form. So assume QB  is also reduced. Then, by the induction hypothesis we 
know that PA , but then  and we are done.  
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Theorem (Basis). Let V be a vector space. Then V has a basis. 
Furthermore, any two bases of V have the same number of elements. 

 
In order to prove this fundamental theorem we need several lemmas. 
 
 

Lemma 1 (Spanning Set). Let V be a subspace of . Then V has a 
subset u , u , 

\
…, u  such that V . Moreover, t n . ]… ≤

Proof. For each coordinate 1 , we say that  contributes if there is a vector in V 
which is 0 in all coordinates less than , but not 0 in that coordinate. Since it is not zero 
in that coordinate, by dividing by that nonzero number, we can assume the vector is 
actually 1 in that coordinate. Thus we say a coordinate i contributes if V has a vector of 
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the form   where the 1 occurs in the i

0

0
1
*

          

#
th coordinate. Let i i  be the 

contributing coordinates, and for each of them choose a vector as described above: u , 
, 

1 2 t< < <" i

1

u2 …, . Certainly t  since there are at most n contributing coordinates. We claim 

. Let  be arbitrary. Then certainly, for 
, . Consider 

u

u u1 2

j

t

, ,…
= 0

n≤

vΤ

−
[ ]nu,

a
V =
j <

( 1 2 na a a V= ∈"
v u

)
i1 ∈a Vi1 1 . Then for all coordinates j i< 2

1i 2

, this vector must 
have 0 entries since there are no contributing coordinates between  and i . Again, by 
subtracting the appropriate multiple of u , we will obtain a vector with zeroes entries in 
all coordinates . Proceeding in this fashion, we will eventually arrive at the 0 
vector, and so 

2

[ ],
j < i3

1 2, ,v u u un

u1 u2

∈ … .  

… ut

1 2, , ,u u ut…
01 =

u1 ≠

u1

0

2

[ ]u2 1∈ 1 2, , ,u u … ],ut…

u2 ]u2,

}

u3

{ }, , ,u u u… v

 
The astute reader will observe that this argument is just a formalization of Gaussian 
Elimination in a sense that starting with a matrix, and the subspace spanned by its rows, 
the algorithm proceeds to find the u’s in an even better form. 
 
 
Observe that the u’s selected in the Spanning Set Theorem are linearly independent. 
 
This argument should be familiar 

Lemma 2 (Reduction). Let , , ,  be given. Then there is a 
subset of the u’s such that it is linearly independent, and their span is the 
span of all the u’s, [ ]. 

Proof. The proof is by induction on t. If u , drop it from the collection and proceed. 

Assume then . If u , then [ ] , so we can drop 

. Otherwise,  and u  are linearly independent. If 

ut [ 1 3, ,u u=

[u u3 1∈ , then we can drop 
, if not the three vectors are linearly independent. Etcetera.  

 
In fact, Gaussian Elimination does exactly this to the columns of a matrix, picking the 
pivotal ones as the linearly independent set while describing each nonpivotal column as 
a linear combination of the previous ones: 
 
Note that we already have that every vector space has a basis, but we are missing the 
more crucial fact that any two bases have the same size! Thus we need one more lemma. 
 

Lemma 3 (Size). Let  and {1 2 t 1 2, , ,v v k…

1 2, , ,u u ut…

 be collections of 

linearly independent vectors. Suppose [  is contained in ]
[ ]1 2, , ,v v v k… . Then . t k≤
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Proof. It is by induction on the number of elements that are in { , but not in }
}

1 2, , ,u u ut…

{ 1 2, , ,v v v k… . If there are none, then  is contained in { }{ 1 2, , ,u u ut… } 1 2, , ,v v … v k , and 

clearly . Otherwise, without loss of generality, let ut k≤ 1 ∉{ 1 2, , , }v v v k… . But since 

u1 ∈ 1 2, ,[ ],v v v k… ,  for some scalars a’s. Consider only the 
v’s with nonzero coefficients. If all of them were u’s, then the set of u’s would not be 
linearly independent. So at least one of the v’s with nonzero coefficient is not a u. 
Without loss let it be . Consider now the set { , in other words we drop v  

and pick up u . We next claim that [ ]

1 1 1 2 2u v va a= +

v1

1

vk ka+ +"

1 2, ,u v }, v k

,

…

1 2, ,
1

v v v k… = [ ]v k

[ ],
1 2, , ,u v …

1 1 2, ,

. Since 

, we can solve for , and prove that 1 1 1u va a= + 2 2v vk ka+ +" v1 v u v∈ …

,ut u v

v k

1 2, ,…

. The 

other containment is trivial. But then if we consider { }  and , 
then the hypothesis applies, but now the two sets have one more vector in common, and 
hence the induction takes over, and we have that , as promised.  

1 2, ,u u … { }k, v

t ≤ k
 
 
Now the theorem follows from the three lemmas. 
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Theorem (Adjoints). Let A be an  matrix. Then there is a scalar a 
such that  

n n×

i iAA AA a= = I . 
 
Also recall that the scalar in the theorem is by definition the determinant of A. So in fact 
we have to prove that  

i i ( )detAA AA A= = I . 
We will be using the expression: The theorem holds for A, that will in particular imply 
that the determinant of A is defined by this equation.  
 
As before, if we let A ij

−

 denote the matrix obtained from A by deleting the ith row and jth 

column, then the i j position of , iA , a� , is given by ij

ija =� ( )1 det A
i j

ji
+− . 

 
 
The proof of the theorem is by induction. Observe that once the theorem is verified for 
matrices of size , then we can define the adjoint of any . We have seen 
the theorem holds . So we assume the theorem holds for all matrices of size 

n n×
n

1n n+ × +1
1,2,3=
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n n×  or smaller, and at the same time we can discuss the adjoint of any n n  
matrix.  

1 1+ × +

5 8
2 4
    

1 1 1j j jc a b= +

M
a b
c d
 =   

i jin m=−

N = 

j k+

I=j k+

For the rest of the section, we assume A, B and C are  or smaller 
while M and N are . 

n n×
1 1n n+ × +

 
 
We need to prove a few facts before we can finish proving the theorem. If two matrices A 
and B are identical in all rows except possibly the first one, then we can create a new 
matrix C by adding the two first rows of A and B, and leaving all other rows the same. We 

will use  to denote this construction. For example,     
. 

1

C A B= + 3 5 2 3
2 4 2 4

1    + =   

Lemma 1. Let . Then det . 
1

C A B= + det detC A= + B

1 j 1jProof. Now for any j, , so � � , but , so 

computing the 1 entry of 
1 1C A Bj j= = 1 1j jc a b= = �

,1− iCC  we get det .  det detC A B= +
 
 

Lemma 2 (Permutation). Let M be a matrix for which the theorem holds. 
Let P be the permutation matrix obtained from I by switching rows k and 

. Let N , so N is obtained from M by switching rows k and 

. Then  
1k+
1k+

PM=

  can be obtained from N� iM  by multiplying by −  and switching 
columns k and . In other words, 

1
1k+ iN M . P=−�

 The theorem holds for N. 
 . det detN M=−

Proof. By induction on n once more. All claims are trivial in the case : , 

,  and . Assume the lemma holds for smaller 

matrices. If i k , then easily N  is obtained from M  by switching two 

consecutive rows. So by induction , so if i k , . But 

also  and N , so 

1n=

, 1 ji�

c d
a b
  

Nkj =

iM d b
c a

−
−
 =  

, 1k≠ +

1Mk j+ 1k j+







N
b d
a c

−
−
 =  

�

ij

det ij =−

Mkj

ij

kdetN Mij ≠ +

= i 1jkm +jk =−n�  and i1jkn + = jkm−�  since  and 

 differ in parity. And  has been proven. Since P is symmetric, . So  1+ 2P

NN� i ( ) (det detPMMP P M IP M I= = − =− )  
and  

NN� i ( )detMPPM M I= =− , 
and all claims are proven.  
 
It is worth noting that actually we have the lemma for any swap of rows since any such 
permutation can be accomplished by a sequence of consecutive swaps. For example, to 
swap 2 and 7, first swap 2 and 3, followed by 3 and 4, 4 and 5, 5 and 6, 6 and 7, 6 and 5, 
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5 and 4, 4 and 3 and finally 3 and 2. The end result is that 2 and 7 have been swapped but 
nothing else has changed. 
 
 

Lemma 3 (Multiple of a Row). Let M be a matrix for which the theorem 
holds. Let D be the diagonal matrix with 1’s along the diagonal except in 
the 1 position where there is a nonzero x. Let , so N is obtained 
from M by multiplying the first row by x. Then  

,1− N DM=

  is identical to N� iMx  except the first column is divided by x. In 
other words, i 1D−=�N . Mx

 The theorem holds for N. 
 . det detN Mx=

Proof. By induction on n once more. All claims are trivial in the case : , 1n= M
a b
c d
 =   

N
xa xb
c d

 =   
i

,  and N . Assume the lemma holds for smaller 

matrices. If , then easily  is obtained from  by multiplying the first row by x, 

so by induction , so if , 

iM d
c a

−
−
 =  

1≠

det Nij =

b


b


d x
c xa

−
−
 =  

�

Mij i ≠

Nij

det

Mij

x 1 ijin� jixm= . But also N , so 

. And  has been proven. So  
1 1Mj j=

i1 1j jn m=�

NN� i ( ) (1 1det detDM MD D M ID M Ix x x− −= = = )  
and  

NN� i ( )1 detMD DM M Ix x−= = , 
and all claims are proven.  
 
 
Note that Lemma 3 combined with Lemma 2 gives the ability to multiply any row by a 
nonzero number, and be able to conclude as in the last. 
 
 

Lemma 4 (Add a Multiple of a Row). Let M be a matrix for which the 
theorem holds. Let K be the matrix with 1’s along the diagonal and zeroes 
everywhere else, except for an x in the position. Let N , so N is 
obtained from M by adding x times the first row to the second row. Then  

2,1− KM=

  is identical to N� iM  except for the first column, from which x times 
the second column has been subtracted. In other words, N M . i 1K−=�

 The theorem holds for N. 
 . det detN M=

Proof. By induction on n once more. All claims are trivial in the case : , 

,  and . Assume the lemma holds for 

1n= M
a b
c d
 =   

N
a b

c xa d xb+ +
 =   

iM d b
c a

−
−
 =   

N
d xb b
c xa a
+ −

− −
 =  

� 

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smaller matrices. If , then easily  is obtained from M  by adding x times the 

first row to the second row, so by induction det . If i , . If 

, , so n� . Finally, if i ,  where D is as in the 
previous lemma. So by Lemma 1, . By Lemma 3, 

. Also 

1,2i ≠

2j =

Nij

det

( )

ij

j

D

det

detN Mij i=

1 1 1

1

N Mj j= +

1 1detN Mj j= +

1,2≠

2M j

2DM j

iji jin m=�

2i=

detDM

2N Mj j=

det Mx=

2 2jim =

2 2j j
i21 +

2j2 j = −det M j m , so i i1 1j j − 2jxmn m=�  and  has been 
proven. So  

NN� i ( )1 1 detM IK− − =( )M IdetKMMK= =

NN�

K

i ( )det M I=1K−=MK

M

M

,1−
1i ≠

N�

L=

iM
i 1L−=�

det

N PKPM=

detN M=

k j i1 1 1P MP K− =

n

i =

1 P− −

det

0

0


#

1 1−

0

a

"

N=−�
( )1 det

detM Aa

KPM

= 

P =
M

0

0
A

a "

#

PM−

0 0  

K− −

×

( )1N= − −

0   

A

=

 
and  

, 
and all claims are proven.  
 

Lemma 5 (Add a Multiple of a Row Further Down). Let M be a matrix 
for which the theorem holds. Let L be the matrix with 1’s along the 
diagonal and zeroes everywhere else, except for an x in the i position 
where . Let N , so N is obtained from M by adding x times the 
first row to the ith-row. Then  

  is identical to  except for the first column, from which x times 
the ith-column has been subtracted. In other words, N M . 

 The theorem holds for N. 
 . 

Proof. We will do the third row and then proceed to do the fourth row, et cetera. Let P be 
the matrix that switches the second and third rows, and let K be as in the previous lemma. 
Then , and so  

 
and det , and we are done. The remainder is similar.  
 
 
Before the next lemma, observe that if the theorem holds for a matrix and it has a row (or 
column) of zeroes, then its determinant must be 0 since that row (or column) of zeroes 
will produce a row (or column) of zeroes in the product. 
 
 

Lemma 6 (Extension). Let A be n . Then the theorem holds for any 

matrix of the form M . Moreover, M , 

and det . 

iA
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Proof. When computing stage 1 of the process, it is clear we first get,   by 

the remark before. Now we do the rest by induction. Scratching out any other row and 

column leaves a matrix of the form  whose determinant is (by 

induction) the same as 

det 0 0
0

0

A       

"

#

1 1

0 0

0

0

A
Mi j

ij

a

+ +

     =        

"

#

det A ija . Since the oddness of a position does not change when 

one adds 1 to both row and column, and finally by transposing, we get that  is of the 

form 
 . Now by block multiplication and induction, we get  

iM

i

det 0 0
0

0

A

Aa

      

"

#

i i ( )detMM MM A Ia= = . 
So the theorem is true for M and all claims follow readily.  
 
Now we are ready for the proof of the theorem. Note we have already shown that if the 
theorem is true for M, then it is also true for M  (see Section  for the argument).  Τ

 
So let M be an arbitrary matrix of size . If the first row and column of M is all 
zeroes, then we are done by the last lemma. If the first column of M is all zeroes but not 
the first column, we will tackle M  first. So without loss, assume the first column of M is 
not all zeroes. We can switch the first row (by Lemma 2) with any other row if 
necessary, so again we can assume the 1 position is not 0. Now by Lemma 5, we can 
assume the rest of the entries of the first column are all 0. Now we can transpose, and do 
the same to the first row, and so we arrive at a matrix of the form for Lemma 6, and 
since it is true for this matrix, we are done. 

1n n+ × +

,1−

1

Τ
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Theorem (Multiplicativity). Let A and B be n . Then n× j iiAB BA=  and 
det det detAB A= B . 

 
Observe that if we have the first claim, then 

( )det AB I ( ) j( ) i i ( ) i ( )( )det det detAB AB ABBA A B IA B A I= = = =  

and the second claims follows immediately. 
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Recall that for an invertible matrix, i ( ) 1detA A A−= .  
 
Call a matrix A good if j iiAX XA=  and j i iXA AX=  for all square matrixes X. We proceed to 
show that every matrix is good. As in the case of the Adjoint Theorem, we need several 
simpler facts. 
 

 Since det I= , � , so I is good. 1 I= I
 

 If A is good, then so is AΤ  since 
k ( )k ( )k ji( ) i j jiXA AX AX X A A X A

ΤΤ ΤΤ ΤΤ Τ Τ Τ Τ= = = = = XΤ , 

and similarly for the other side. 
 

 If A and B are good, so is AB  because 
( )k ( )k ( )ki ii( ) i i i i( ) i j( )AB X A BX BX A XB A X BA X AB= = = = =  

and similarly for the other side. 
 
 

 If j iiAX XA=  and k ijA X XAΤ = Τ  for every X, then A is good. This follows from the 
following equation: 

j ( )k k jj jj ii( )XA XA A X X A A X AX
ΤΤ ΤΤ Τ Τ Τ Τ Τ Τ Τ = = = = =    

so j i iXA AX= . 
 
 

 Let P be the permutation matrix obtained from I by switching two rows. Then P is 
good and det .  1P=−

Proof. Let P  be the permutation matrix obtained from I by switching rows j and j 1j+ . 

By Lemma 2 from the previous section we have k iP X XPj =−

P Pj =
j  for any matrix X. Also we 

have . So � � , so , so det  and 2Pj = I kI P P P Pjj j j= =− P j j=−� 1− k iP X . Since 
 is symmetric,  is good by . We have seen before that P is the product of an odd 

number of ’s. For example, if P swaps rows 2 and 7, then we saw that 
, and so by , we are done.   

XP jj = �

Pj

P

Pj

7 6 5 4 3 2P P P P P

P

4 5 6P P
j

P2 3P P P=
 
 

 Let D be the diagonal matrix with 1’s along the diagonal except in the 
position where there is a nonzero x. Then D is good and ,i i− detD x= . 

Proof. That detD x=  is trivial since D is diagonal. Observe that if we let E be the 
diagonal matrix with 1’s along the diagonal except in the 1 position where there is a 
nonzero x, and we let P be the swap of rows 1 and i, then PEP . By Lemma 3 from 

,1−
D=
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the previous section, j i 1XEx −=EX . But E� , so ( ) 1detE −= E j iEX XE= �

det 1L =

. And since E is 
symmetric, we have that E, and hence D is good.  

, − j≠

iK j =
PKP=
k i i i ikKPXP= =

I 0

0 0
k

k

 =   

P XPKP XK= =� �

Q=

2

XPKP=�

i

iA 0=
j iAX 0= =

1

0
I 0−  

1

1
0 0

0
n−     

Ann
1 2

1 2

u u

x
= 

0
un  

u u
AX = 

iX=


( ) (

( ) (

2det

1 det

n

n n+

−" "
#

" "

)

)1 1

n

n−

  

=
0 0

0 0



# #
( ) (

(

21 det

1 det

n

n n+

" "
#

" "

)

)

  

jAX=

 
 

 Let L be the matrix with 1’s along the diagonal and zeroes everywhere else, 
except for an x in the i j position where i . Then , and L is good. 

Proof. That L has determinant 1 is trivial since it is upper triangular. Let K be the matrix 
with 1’s along the diagonal and zeroes everywhere else, except for an x in the 

position. By Lemma 4 from the previous section, for any matrix X, 2,1− j i 1XK−=KX , but 
since , det 1K= 1K− = , so i iKX . Easily if we let P be the swap of the first and 
second rows, then K , so  

XK
Τ

k k ji j ijK X PKPX PXK PP XKΤ Τ= =� �  
and by , K is good. Returning to L, if we let P now be the swap of the second and i 
rows, then PL  will have ones on the main diagonal and x in the position, and 
finally if Q is the swap of the first and j rows, then L , and we are done.  

P ,1−
PKPQ

 
 

 Every invertible matrix is good. This follows directly from the previous three 
facts since by Gaussian elimination, every invertible matrix is the product of good 
matrices. 

 

 If A I , then A is good. 0k n−= ⊕

Proof. If , we are done. If , then k = n k n≤ − , and since ( ) ( )AXr r≤ A  and 

( ) ( )XAr ≤ Ar , we have jXA

iA=

, and we are done. Thus the only interesting case is 

, so . Then  since the only occurrence of a 

submatrix without a zero row or column is in 

1k n= −
0

A n= 

. Let 
un

n

X
x x

  
"
"

 where 

. So . But then we have 1n−\1 2, ,u u ,un ∈… 1 2

0 0
"
"

* * 1

* *

u u

u u−

# # , 

i iXA

( ) 1 1

u u

u u

n

n−

−

−

, 

so we are done since A is symmetric.  
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Now we are ready to finish the theorem by proving that every matrix is good. Let A be 
given. Then there exists an invertible matrix P so that  is in reduced form. Easily 
then there exists an invertible matrix Q such that  is in reduced form. But 

readily N I . And since , we are done. 

PA M=
QM NΤ =

0= ⊕ ( ) 11A P N Q
−− Τ=
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Theorem (Triangularity). Let A have real eigenvalues. Then there exists 
an invertible matrix P such that P A  is triangular. 1 P T− =

Proof. Actually we will prove we can find a P of determinant 1. The proof is by induction 
on n. If , it is obvious. Otherwise, let  be an eigenvector of A with eigenvalue λ . 
So  and 

1n=
0≠

u
u Au= λ

un

u

)
. Complete u  to a basis, . Let 

, and since we could have chosen any multiple of any of the 
columns for that column, we can assume without loss that det . Now  

1u= 1 2, , ,u u un…

( 1 2uR u= "
1R=

( )1 2AR Au Au Aun= " ( )1 2u Au Aun= λ ="  

( )1 2
v

u u u
0 B

n

Τ λ     
"

v
R

0 B

Τ λ  =    
 

where v  is a vector of size  and B  is an ( )  matrix. Since 

, B has real eigenvalues. By the induction hypothesis then we can 
find a matrix real matrix  of determinant 1, and an upper triangular matrix S so that 

. Let P R . Then clearly . Also  

1n− (1n n− × − )1
B( ) ) ( )c x x c x= −λ

BQ= = 

(A

QS

Q
0

0 Q

  
1

det 1=P

1 0
AP AR

0 Q

  = =   
1 0v

R
0 Q0 B

Τ  λ    =       
v Q

R
0 BQ

Τ λ  =   
 

v Q
R

0 QS

Τ λ  =   
1 0 v Q

R
0 Q 0 S

Τ   λ   =     
PT   

where T= v Q

0 S

Τ λ     
, an upper triangular matrix, and we are done.  
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Theorem (Minimum Polynomials and Diagonability). Let A be square. 
Then the following are equivalent: 

 A is diagonable. 
  has no repeated roots. ( )Am x

 There exists a polynomial ( )p x  with no repeated roots that A 

satisfies, i.e., ( )A 0p = .  

Proof. Clearly, since  is a factor of every polynomial that A satisfies,  and  are 
equivalent. If we assume , then since two similar matrices have the same minimum 
polynomial, it suffices it to prove  for a diagonal matrix. But in order to produce a zero 
matrix from a diagonal one, all we need to is take one factor for each of the different 
elements in the diagonal, and we have . So we only have to show that  implies . So 
assume that for some distinct numbers λ , λ ,…, λ , 

( )Am x

1 2 t

( ) ( )( ) ( )1 2A tm x x x x= −λ −λ −λ" . 
Of course, each of these is an eigenvalue of A. We will produce enough eigenvectors for 
each of these eigenvalues. It suffices it to do it for . Without loss, by the Triangularity 

Theorem, we can assume we can find an invertible matrix P such P A  is 

triangular and  where M is upper triangular of size  with λ ’s along the 

main diagonal and N is upper triangular and none of its diagonal entries is λ . Hence k is 
the algebraic multiplicity of  in , so in order for A to be diagonable, we need to 
find k eigenvectors for . But if we show that M , then the first k columns of P will 
all be such eigenvectors, and we will be done. We have ( )

1λ

= λ

1 P T− =

1

1

) (I T It−λ ="

M X
T

0 N

  =    

1λ

k k×

(T−λ

1λ ( )Ac x

1I

0

0

I

)1 2T I−λ  

so by block multiplication ( ) . However, for i , 
, is an invertible matrix, and so .  

( ) ( )1 2M I M I M It−λ −λ −λ ="

1M I 0−λ =
1>

M i−λ
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Lemma (Real Eigenvalues). Let A be a real symmetric matrix. Then A has 
real eigenvalues. 

 
Ironically, in order to prove this we need to explore complex numbers further. We 
assume the reader is familiar with the complex numbers as being the set of all numbers of 
the form  where i  (one could think of these as 2-vectors. Thus complex 
numbers correspond to points in the plane, as real numbers correspond to points in the 
line.  

ia b+ 2 1=−
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The addition is like vector addition, coordinate-wise,  

( ) ( ) ( ) ( )a b c d a c b d+ + + = + + +i i i  
where a b c  are real numbers. 
 

d, , ,

Subtraction is easily understood since negatives are available readily: 
( )− + = − −a b a bi i . 

and subtraction is nothing but addition of the negative. 
 
What about multiplication? Just use the distributive law: 
  ( )( ) ( ) ( )2 3 1 2 1 3 1+ + = + + +i i i i i = + + +2 2 3 3 2i i i . 
The only confusing term is 3 , but recalling what  is all about, i , so 32i i 2 1= − 32i = − , 
hence  

( )( )2 3 1 1 5+ + = − +i i i . 
And in general,  

( )( ) ( ) ( )a b c d ac ad bc bd ac bd ad bc+ + = + + = − + +i i i i + i2 i . 
 
As usual, to understand division, we need to understand reciprocals. Some pose no 

problem, for example, 1
i

i= −  since ( )i i− = 1. But what about 1
1+ i

?  

 
To accomplish this, we need to define the conjugate of a complex number. If z a b= + i  
is a complex number, then its conjugate, denoted by z , is defined by ib−z a= . The 
conjugate satisfies 2zz a b= + 2 , which is a positive real number for any . Also z ≠ 0
z = z  exactly when  is a real number. We also have z z u z u+ = +  (conjugate of a sum 
is the sum of the conjugates) and z u z u=  (conjugate of a product is the product of 
the conjugates). 
 

Returning to 1
1+ i

, if we multiply both numerator and denominator by the conjugate of 

, , we get that 1+ i 1− i
( )( )

1
1

1
1 1

1
2

1
2 2+

=
−

+ −
=

−
= −

i
i

i i
i i  and we have succeeded in 

finding the reciprocal., and indeed this exemplifies the general technique for division. 
 
The key distinction between the complex numbers and the real numbers when it comes to 
vectors is the fact that for any real nonzero vector, u u . But as we can see if we let 

, the same is not true for complex vectors. Rather, when one discusses complex 

matrices and vectors, rather than the transpose of it, one considers the conjugate 

transpose of it, denoted by 

0Τ >

u= 1
i

    

A A A
Τ∗ Τ= = . For example 

  
. Some of 

*
1 1

2 3 3
i i i

i

+ −
−

 =   
2

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the properties of the conjugate transpose are reminiscent of the properties of the transpose 
and they include: 

 ( )* * *A B A B+ = +  

 ( )* * *AB B= A  

 *A AΤ=  if and only if A has real entries. 
 If u , then . 0≠ * 0u u>

 
There is one theorem about complex numbers that we will not prove. It is known as the 
Fundamental Theorem of Algebra and it simply states that  

every real polynomial has a complex root. 
For our course, it would be equivalently stated as  

every real matrix has a complex eigenvalue. 
Actually, more is true, every complex matrix of size n has n complex eigenvalues. 
 
And now we are ready to return to our goal lemma. So let A be real symmetric. By the 
Fundamental Theorem of Algebra, it has a complete set of eigenvalues. All we need to 
show is that they are real. So let Au= λu . But then by conjugate transposing, we get 

* * *u A u= λ . But now let us compute u A : * *u

( ) ( ) ( ) ( )* * * * * * *u u u A u u A u u Au u u u uλ = = = = λ = λ *  

and since u u , we can conclude * 0> λ , it is real. = λ
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Lemma (Schur’s Lemma). Let A have real eigenvalues. Then there exists 
an orthogonal matrix P such that , an upper triangular 
matrix. 

1P AP P AP T− Τ= =

Proof. By induction on n, the size of A. If , there is nothing to prove. Assume it true 
then for smaller matrices, and let u  be an eigenvector of A with eigenvalue . So u 0  
and 

1n=
λ ≠

Au= λu , moreover we can assume u u . Since every orthonormal set can be 
completed to an orthonormal basis, we can find an orthogonal matrix Q with first column 

. But then, as we have seen several times before,  

1Τ =

u
( )2AQ Au Au Aun= " ( )2u Au Aun= λ ="  

( )2
v

u u u
0 B

n

Τ λ     
"

v
Q

0 B

Τ λ  =    
 

where v  is a vector of size  and B  is an ( )  matrix. Since 

, B also has real eigenvalues. By the induction hypothesis then we 

1n− (1n n− × − )1
B( ) ) ( )c x x c x= −λ(A
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can find an orthogonal matrix M  such that M B  where  is an upper triangular 

matrix. Let P Q . Then trivially, P  is orthogonal and 

M SΤ =

1 10 0v

0 M0 B

Τ      

A

S

0 M

0 M

Τ

Τ

x x
x x
x x
x x
x x

1 0

0 M

  =    
1 1

Q AQ
0 M

Τ Τ
Τ

      

i

i


= =



  λ 

x
y

   
1,...,i= ( 1 2u u u" ) )

( 2 5u" "

1 2u u" "

)

5

1 2Pu Pu

1 2u v u+ +

5 =

u

=

1 u

F F=

0 0
P AP

0 M

     0 MΤ

  =  
1 0 v M

0 BM

Τ

Τ

   λ   =     
 

v M

BM

 λ  =   
v M

0 S

Τ λ  =   
T , 

an upper triangular matrix.  
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Theorem (Five Points). Any five points lie on a conic. Moreover, the 
conic is unique if and only if no four of the points are collinear. 

 

By our discussion in the text, we need to show that  

has rank 5 unless 4 of the points are collinear. 

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2
2 2
3 3 3 3 3 3
2 2
4 4 4 4 4 4
2 2
5 5 5 5 5 5

2 1
2 1
2 1
2 1
2 1

y y x y
y y x y
y y x y
y y x y
y y x y

−
−
−
−
−

        =         

 

For ui =   for , define 5 5F (Ar=  where A is as defined 

above. 
 
Trivially, by the symmetry in the x’s and the y’s, if P is a permutation matrix 

  ( )Pu uF F
 

 . ( ) (5v v u+ )

Proof. It suffices to show it if  by . But by simple column reductions: 
0

v
a    
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2 2
1 1 1 1 1
2 2
2 2 2 2 2
2 2
3 3 3 3 3
2 2
4 4 4 4 4
2 2
5 5 5 5 5

2
1 1

2
2 2

2
3 3

2
4 4

2
5 5

2 1
2 1
2 1
2 1
2 1

2 2
2 2
2 2
2 2
2 2

x x y y x
x x y y x
x x y y x
x x y y x
x x y y x

ax a ay a
ax a ay a

r ax a ay a
ax a ay a
ax a ay a

−
−
−
−
−

 + + + +    + + + +    + + + +     + + + +     + + + + 

1

2

3

4

5

y
y
y
y
y

1

2

3

4

5

y
y
y
y
y

)5



0

 

2 2
1 1 1 1 1
2 2
2 2 2 2 2
2 2
3 3 3 3 3
2 2
4 4 4 4 4
2 2
5 5 5 5 5

2
1 1

2
2 2

2
3 3

2
4 4

2
5 5

2 1
2 1
2 1
2 1
2 1

2 2
2 2
2 2
2 2
2 2

x x y y x
x x y y x
x x y y x
x x y y x
x x y y x

ax a ay
ax a ay

r ax a ay
ax a ay
ax a ay

−
−
−
−
−

 + + +    + + +    = + + +     + + +     + + + 

 

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2
2 2
3 3 3 3 3 3
2 2
4 4 4 4 4 4
2 2
5 5 5 5 5 5

1 1

2 2

3 3

4 4

5 5

2 1
2 1
2 1
2 1
2 1

2 2
2 2
2 2
2 2
2 2

x x y y x y
x x y y x y
x x y y x y
x x y y x y
x x y y x y

ax ay
ax ay

r ax ay
ax ay
ax ay

−
−
−
−
−

 + +    + +    = + +     + +     + + 

 

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2
2 2
3 3 3 3 3 3
2 2
4 4 4 4 4 4
2 2
5 5 5 5 5 5

1

2

3

4

5

2 1
2 1
2 1
2 1
2 1

2
2
2
2
2

x x y y x y
x x y y x y
x x y y x y
x x y y x y
x x y y x y

ax
ax

r ax
ax
ax

−
−
−
−
−

 +    +    = +     +     + 

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2
2 2
3 3 3 3 3 3
2 2
4 4 4 4 4 4
2 2
5 5 5 5 5 5

2 1
2 1
2 1
2 1
2 1

x x y y x y
x x y y x y
x x y y x y
x x y y x y
x x y y x y

r

−
−
−
−
−

        =         

. 

 
 
For any invertible diagonal matrix D,  

 . ( ) (1 2 5 1 2Du Du Du u u uF F=" "

Simply, if , then  0
0

D
a

b
 =  

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2
2 2
3 3 3 3 3 3
2 2
4 4 4 4 4 4
2 2
5 5 5 5 5 5

2 2

2 2

2 2

2 2

2 2

2 1
2 1
2 1
2 1
2 1

a x abx y b y ax by
a x abx y b y ax by
a x abx y b y ax by
a x abx y b y ax by
a x abx y b y ax by

−
−
−
−
−

                

 

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2
2 2
3 3 3 3 3 3
2 2
4 4 4 4 4 4
2 2
5 5 5 5 5 5

2 1
2 1
2 1
2 1
2 1

x x y y x y
x x y y x y
x x y y x y
x x y y x y
x x y y x y

−
−
−
−
−

        =         

2

2

0 0 0 0 0
0 0 0 0

0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0 1

a
ab

b
a

b

                         
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so they have the same rank. 
 

For any matrix B of the form  1
0 1

B
b =   

 . ( ) (1 2 5 1 2Bu Bu Bu u u uF F=" " )5
1

2

3

4

5

y
y
y
y
y

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2
2 2
3 3 3 3 3
2 2
4 4 4 4 4
2 2
5 5 5 5 5

2 2 2
1 1 1 1

2 2 2
2 2 2 2 2

2 2 2
3 3 3 3 3

2 2 2
4 4 4 4 4

2 2 2
5 5 5 5 5

2 1
2 1
2 1
2 1
2 1

2 2
2 2
2 2
2 2
2 2

x x y y x by
x x y y x
x x y y x
x x y y x
x x y y x

bx y b y by
bx y b y by by
bx y b y by by
bx y b y by by
bx y b y by by

−
−
−
−
−

+ + + +
+ + + +
+ + + +
+ + + +
+ + + +

                

 

2 2
1 1 1 1 1 1
2 2
2 2 2 2 2 2
2 2
3 3 3 3 3 3
2 2
4 4 4 4 4 4
2 2
5 5 5 5 5 5

2 1
2 1
2 1
2 1
2 1

x x y y x y
x x y y x y
x x y y x y
x x y y x y
x x y y x y

−
−
−
−
−

        =         

2

1 0 0 0 0 0
1 0 0 0 0

2 1 0 0 0
0 0 0 1 0 0
0 0 0 1 0
0 0 0 0 0 1

b

b b

b

                        

 

so again they have the same rank. 
 
Finally by putting ,  and  together, we have that  
For any invertible matrix C  

 . ( ) (1 2 5 1 2Cu Cu Cu u u uF F=" " )5

0



1
1
1

 
Now we are ready to prove the claim about the rank. Clearly if 4 points are collinear, then 
take that line together with any line going through the other point, and that will be a conic 
containing all five points. Clearly there are infinitely many such possibilities. So assume 
no four points are collinear. Without loss by  we can assume . Now we can 
assume u  and  are linearly independent. Let . Then  

1u

)
=

2 3u (1
2 3C u u− =

( )1 2 5u u uF =" ( )1 2Cu Cu CuF " 5
0 1 0
0 0 1

p r
q s

F
                  =                          

. 

But the matrix then is of the form 

2 2

2 2

0 0 0 0 0
1 0 0 1 0
0 0 1 0 1

2 1
2 1

p pq q p q
r rs s r s

−
−
−
−
−

                

. 

which after a little reduction becomes 
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2 2

2 2

0 0 0 0 0
1 0 0 1 0
0 0 1 0 1

2 0 0 0
2 0 0 0

p pq q
r rs s

p q
r s

           − −    − − 

1
0
0  

and we need to argue the last two rows have rank 2. All we need to find is a 2  
subdeterminant that is not 0. If , then  since the points are different, and so 

. Also  for otherwise there would 4 collinear points. If , then 
consider the submatrix consisting of the first and third columns (and the last two rows of 

course): . If , then , and then take the second and third 

columns: 

2×
0p=

1=

0,1q ≠

0s ≠

2 0q q− ≠



0r ≠

2

2

q q
s s

−
− −

  
q

1r ≠

2

0
r r

2

2

0
2

q

r

s s s
−
−

  

p=

2

1
s s
−

− −

  



r r


. Similarly, if either , or  or . So we can assume 

none of them is 0. If , then our submatrix is 

0q= 0r =

r r

q s≠

0s=

2q q
rs s

−
− −

2

2
2

1
2

0 2
2

q
s

  

2

 . This is reduced 

to , and if , we are done. If on the other hand r , then we 

can reduce the matrix to 

2

0 2
2

q
rs

1r ≠

q
s
−
−

1

2

=

2

0 2
0 2

1
1

   , and since  then, we are done. So we can 

assume none of them are 1. By dividing the first row of 
p pq

rs
q
s− −

q
s

−  r r
p−

  by pq  

and the second one by rs, we obtain 

1 1

1 1
p

2

2

p q
q

r s
s r

− −

− −

  





 , and if this matrix were to be of 

rank 1 then 1 1r
q s
=p− −  and 1 1q s

p r
− = −  would have to happen. By cross-multiplying 

and subtracting, we get p s r q= −− . Thus we have . Now , 
for if it were 1, then we would have four points on the line . By letting 

 and  in the first equation, we get  

1
1=

p q r s+ n+ = =
x y+

≠ 1n ≠

q n p= − s n r−=

2






1 1p r
n p n r
− −=
− −

, 

and when denominators are cleared, one gets , and so 
, and since , we conclude 

np n pr r nr n pr p− − + = − − +
( ) ( )1n p n− = −1 r 1n ≠ p r= . But this is a contradiction 
since that would imply , and we would equal points. Hence we do have a submatrix 
of rank 2, and so the whole matrix is of rank 5.  

q= s
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Theorem (Affine Transformations & Conics). Let A be an invertible 
matrix and let b be any vector.  

  where  ( )( ) ( ), , , , ,A 0 M c N dF f =C C f

c

)g

)h

b

( )1 1N A MA
Τ− −=  and ; ( )1d A

Τ−=

  where  ( )( ) (, , , , ,I b M c M eF f =C C

2e c Mb= −  and  b c b Mbg f Τ= + ⋅ −
 So combining  and , we get 

  where  ( )( ) (, , , , ,A b M c N kF f =C C

( )1 1N A MA
Τ− −=

h f= +

,  and 

. 

( )1 2k A c N
Τ−= −

( )1b A c b Nb
Τ− Τ⋅ −

 
Proof. Let z ∈ ( ), ,M c fC , so z Mz z c fΤ Τ+ = . But then, for ,  

( ) ( ) ( )Az N Az Az d
Τ Τ+ = ( ) ( ) ( ) ( ) ( )1 11Az A MA Az Az A c-− −Τ ΤΤ Τ+ = z Mz z c fΤ Τ+ =  

since ( ) . Thus  is contained in ( )1 1A A
− ΤΤ −= ((, , ,A 0 M cF C ))f )( , ,N d fC . But by applying 

what we have just proven to ( ), ,N d fC  and 1A− , we get  is contained in (( , ,N dF C ))f1 ,A 0-

( ), ,M c fC , and so multiplying by , we get ,A 0F ( ), ,N d fC

z c

 is contained in 

, and so we obtain . For , if ( )( ), ,M cF fC,A 0 z Mz fΤ Τ =+ , then  

( ) ( ) ( )z b M z b z b e
Τ Τ+ + + + = ( ) ( ) ( ) ( )2z b M z b z b c Mb

Τ Τ+ + + + − =  

  2 2z Mz b Mz z Mb b Mb z c b c z Mb b MbΤ Τ Τ Τ Τ Τ Τ Τ+ + + + + − − =
2 2z Mz z c z Mb b Mb b c z Mb b MbΤ Τ Τ Τ Τ Τ Τ+ + + + − − =2 b c b Mbf gΤ Τ+ − =  

where we used the fact that b M  since M is a symmetric matrix. So we obtain 
 is contained in C . To finish the proof of , we apply what just 

been proven to C  and , and the rest is just as in . Finally,  follows 
immediately from  and  since .   

z z MbΤ Τ=
( , ,M e g

) ,I bF −

, ,A b IF F=

((, , ,I b M cF C ))f )

,

( , ,M e g

b A 0FD
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Example 2, 16, 20 
Example 3, 13 
Example 4, 23 
Example 5 Revisited, 130 
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Hamilton, 143 
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I matrix, 23 
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law of exponents, 16 
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linear systems, 60 
linear transformation, 102 
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main diagonal, 2 
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matrices, 1 
matrix of coefficients, 42 
matrix, 4 
maximum, 67 
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minimum, 66 
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multiplicity, 146 
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123 
mutually orthogonal, 154 
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nearest point, 113 
nodes, 2 
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nonzero, 128 
normal, 105 
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one-dimensional object, 71 
one-to-one, 107, 108 
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order of multiplication, 13 
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orthogonal basis, 159 
orthogonal complement, 88, 89 
orthogonal matrix, 156, 168 
orthogonal sets, 154 
orthogonal, 76, 154 
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parallelepiped, 74 
parallelogram law, 70 
parallelogram, 74 
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permutation, 133, 142 
permuting rows, 44, 123 
perpendicular, 76, 154 
Petersen graph, 20, 28, 37, 142, 149 
pivot, 48 
pivotal column, 48 
pivotal row, 48 
pivoting, 46, 68 
plane, 72 
point, 69 
polynomial in A, 24, 25 
polynomial, 24, 37, 107 
polynomials & eigenvalues, 141 
powers of a matrix, 91 
powers of a square matrix, 15 
preserves distances, 155 
preserves lengths, 155 
projection on a plane, 106 
projection, 104, 112, 153, 158 
Pythagorean Theorem, 72 
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R 
rank & adjoints, 121 
rank & equations, 55 
rank of a product, 100 
rank of transpose, 100 
rank, 53, 109 
ray, 70 
real eigenvalues, 162 
recursive, 11 
reduce, 45 
reduced form, 48, 53 
reducing by hand, 52 
reduction, 45 
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root, 135 
rotation, 104, 106, 153 
row and null spaces, 97 
row echelon form, 48 
row equivalent, 53 
row expansion, 118 
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row reduced echelon form, 48 
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row space, 89 
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S 
scalar matrix, 148 
scalar multiplication, 5, 70 
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Schur’s Lemma, 163 
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skew-symmetric, 91 
spaces and matrices, 101 
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Spectrum of Inverse, 136 
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symmetric matrix, 23, 162 
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translation, 167 
translations, 167 
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trasformation, 102 
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uniqueness of solutions, 57, 87 
uniqueness of the row echelon form, 50 
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unit vector, 73, 75, 76 
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vector subspace, 79 
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zero function, 103 
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