Group #: _____ Members: _____ Rating: _____

1. (4 points) Let

$$A = \begin{bmatrix} 1 & -3\\ 3 & 4\\ -1 & 7 \end{bmatrix}, u = \begin{bmatrix} 2\\ -1 \end{bmatrix}, b = \begin{bmatrix} 3\\ 2\\ -5 \end{bmatrix}, c = \begin{bmatrix} 3\\ 2\\ 5 \end{bmatrix},$$

and define a transformation $T: \mathbb{R}^2 \to \mathbb{R}^3$ by T(x) = Ax so that

$$T(x) = Ax = \begin{bmatrix} 1 & -3 \\ 3 & 4 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 4x_2 \\ -x_1 + 7x_2 \end{bmatrix}.$$

- (a) Find the image of u under T.
- (b) Does b have a pre-image? That is, does there exist an $x \in \mathbb{R}^2$ whose image under T is b? Why or why not? If so, find one such x. (this is an existence question!)
- (c) Is there more than one x whose image under T is b? Why or why not? (this is an uniqueness question!)
- (d) Is c in the range of T? Why or why not?
- 2. (2 points) Let $A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$. Give a geometric interpretation of the mapping $x \mapsto Ax$ and be sure to show your reasonings.
- 3. (2 points) Let $\mathbf{e}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$, $\mathbf{e}_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$, $\mathbf{y}_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$, and $\mathbf{y}_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}$. Furthermore, let $T : \mathbb{R}^2 \to \mathbb{R}^2$

be a linear transformation that maps \mathbf{e}_1 into \mathbf{y}_1 , and maps \mathbf{e}_2 into \mathbf{y}_2 . Find the images of $\begin{bmatrix} 5\\-3 \end{bmatrix}$ and $\begin{bmatrix} x_1\\x_2 \end{bmatrix}$.

- 4. (2 points) Define $f : \mathbb{R} \to \mathbb{R}$ by f(x) = mx + b.
 - (a) Show that f is a linear transformation when b = 0.
 - (b) Is f a linear transformation in general? Why or why not? Justify your answer.
 - (c) Why is f typically called a linear function?