1. (4 points) Let

\[A = \begin{bmatrix} 1 & -3 \\ 3 & 4 \\ -1 & 7 \end{bmatrix}, \quad u = \begin{bmatrix} 2 \\ -1 \end{bmatrix}, \quad b = \begin{bmatrix} 3 \\ 2 \\ -5 \end{bmatrix}, \quad c = \begin{bmatrix} 3 \\ 2 \end{bmatrix}. \]

and define a transformation \(T : \mathbb{R}^2 \to \mathbb{R}^3 \) by \(T(x) = Ax \) so that

\[T(x) = Ax = \begin{bmatrix} 1 & -3 \\ 3 & 4 \\ -1 & 7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 - 3x_2 \\ 3x_1 + 4x_2 \\ -x_1 + 7x_2 \end{bmatrix}. \]

(a) Find the image of \(u \) under \(T \).

(b) Does \(b \) have a pre-image? That is, does there exist an \(x \in \mathbb{R}^2 \) whose image under \(T \) is \(b \)? Why or why not? If so, find one such \(x \). (this is an existence question!)

(c) Is there more than one \(x \) whose image under \(T \) is \(b \)? Why or why not? (this is an uniqueness question!)

(d) Is \(c \) in the range of \(T \)? Why or why not?

2. (2 points) Let \(A = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix} \). Give a geometric interpretation of the mapping \(x \mapsto Ax \) and be sure to show your reasonings.

3. (2 points) Let \(e_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \quad y_1 = \begin{bmatrix} 2 \\ 5 \end{bmatrix}, \quad \text{and} \quad y_2 = \begin{bmatrix} -1 \\ 6 \end{bmatrix}. \) Furthermore, let \(T : \mathbb{R}^2 \to \mathbb{R}^2 \) be a linear transformation that maps \(e_1 \) into \(y_1 \), and maps \(e_2 \) into \(y_2 \). Find the images of \(\begin{bmatrix} 5 \\ -3 \end{bmatrix} \)

and \(\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \).

4. (2 points) Define \(f : \mathbb{R} \to \mathbb{R} \) by \(f(x) = mx + b \).

(a) Show that \(f \) is a linear transformation when \(b = 0 \).

(b) Is \(f \) a linear transformation in general? Why or why not? Justify your answer.

(c) Why is \(f \) typically called a linear function?