Group #: _____ Members: _____ Rating: _____ Let's get into a good habit of justifying our work. To **formally** justify a **true** *if-then* statement, you need to cite appropriate results (typically in the form of theorems) and show that the antecedent (what follows the "if") in the True/Flase statement is satisfied. This may be hard to do in some situations. On the other hand, to justify a **false** *if-then* statement, you just need to come up with **one** counterexample (i.e., example that shows the statement is not true). Note, you **can not** justify a true statement by simply showing that a few examples work (Getting heads on ten consecutive coin tosses does not mean that you won't get tails on the 11th toss.).

- 1. (3 points) Let A be an $m \times n$ matrix and $\mathbf{b} \in \mathbb{R}^m$. What can you say about the consistency of the system $A\mathbf{x} = \mathbf{b}$ if
 - (a) A has a pivot position in every row.
 - (b) the columns of A span \mathbb{R}^m .

Base on your results here, construct a matrix A of any size such that the system $A\mathbf{x} = \mathbf{b}$ is consistent for every **b**. Be sure to justify your reasonings.

- 2. (2 points) Let $\mathbf{u} = \begin{bmatrix} 2 \\ -3 \\ 2 \end{bmatrix}$ and $A = \begin{bmatrix} 5 & 8 & 7 \\ 0 & 1 & -1 \\ 1 & 3 & 0 \end{bmatrix}$. Is \mathbf{u} in the subset of \mathbb{R}^3 spanned by the columns of A? Why or why not?
- 3. (3 points) Describe the solution set (geometrically and in vector form) of
 - (a) the homogeneous system $10x_1 3x_2 2x_3 = 0$.
 - (b) the non-homogeneous system $10x_1 3x_2 2x_3 = 5$.

Summarize your findings.

- 4. (2 points) Mark each of the following (definition) statements True or False. Whenever possible, justify your answer. That is, point out what goes wrong in the false statements.
 - (a) The effect of adding **p** to a vector is to move the vector in a direction parallel to **p**.
 - (b) The equation $A\mathbf{x} = \mathbf{b}$ is homogeneous if the zero vector is a solution.
 - (c) The equation $\mathbf{x} = \mathbf{p} + t\mathbf{v}$ describes a line through \mathbf{v} parallel to \mathbf{p} .
 - (d) The solution set of $A\mathbf{x} = \mathbf{b}$ is the set of all vectors of the form $\mathbf{w} = \mathbf{p} + \mathbf{v}_h$, where \mathbf{v}_h is any solution of the equation $A\mathbf{x} = \mathbf{0}$.