

- (b) (1 point) What is the set of *all* linear combination of **u** and **v**? That is, the span{ \mathbf{u}, \mathbf{v} }?
- (c) (2 points) Can every point in \mathbb{R}^2 be written as a linear combination of **u** and **v**? Justify your answer.
- 2. (4 points) Answer the following questions concerning span.
 - (a) (1 point) Define *span* in your own words and give an example to illustrate it.
 - (b) (1 point) If $a_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$, $a_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}$, and $b = \begin{bmatrix} -3 \\ 8 \\ 1 \end{bmatrix}$, what is the geometric meaning of $span\{a_1, a_2\}?$

- (c) (1 point) Is $b \in \text{span}\{a_1, a_2\}$? Justify your answer.
- (d) (1 point) Use complete sentences to give a recipe for determining whether a given vector is in the span of a set of vectors.

3. (2 points) Let $A = \begin{bmatrix} 2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1 \end{bmatrix}$, let $\mathbf{b} = \begin{bmatrix} 10 \\ 3 \\ 7 \end{bmatrix}$. Denote the columns of A by $\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3$, let $W = \text{span}\{\mathbf{a}_1, \mathbf{a}_2, \mathbf{a}_3\}, \text{ and } S = \{\bar{\mathbf{a}}_1, \mathbf{a}_2, \mathbf{a}_3\}$

- (a) How many vectors are in S? Is $\mathbf{b} \in S$? Why or why not?
- (b) How many vectors are in W? Is $\mathbf{b} \in W$? Why or why not?