Group \#: \qquad Members: \qquad Rating: \qquad

1. (4 points) Let $\mathbf{u}=\left[\begin{array}{c}-1 \\ 1\end{array}\right]$ and $\mathbf{v}=\left[\begin{array}{l}2 \\ 1\end{array}\right]$. Answer the following questions.
(a) (1 point) display the vectors $\mathbf{w}=\frac{5}{2} \mathbf{u}-\frac{1}{2} \mathbf{v}$ and $\mathbf{z}=\sqrt{3} \mathbf{u}+3 \mathbf{v}$ on the graph paper.

(b) (1 point) What is the set of all linear combination of \mathbf{u} and \mathbf{v} ? That is, the $\operatorname{span}\{\mathbf{u}, \mathbf{v}\}$?
(c) (2 points) Can every point in \mathbb{R}^{2} be written as a linear combination of \mathbf{u} and \mathbf{v} ? Justify your answer.
2. (4 points) Answer the following questions concerning span.
(a) (1 point) Define span in your own words and give an example to illustrate it.
(b) (1 point) If $a_{1}=\left[\begin{array}{c}1 \\ -2 \\ 3\end{array}\right], a_{2}=\left[\begin{array}{c}5 \\ -13 \\ -3\end{array}\right]$, and $b=\left[\begin{array}{c}-3 \\ 8 \\ 1\end{array}\right]$, what is the geometric meaning of $\operatorname{span}\left\{a_{1}, a_{2}\right\}$?
(c) (1 point) Is $b \in \operatorname{span}\left\{a_{1}, a_{2}\right\}$? Justify your answer.
(d) (1 point) Use complete sentences to give a recipe for determining whether a given vector is in the span of a set of vectors.
3. (2 points) Let $A=\left[\begin{array}{ccc}2 & 0 & 6 \\ -1 & 8 & 5 \\ 1 & -2 & 1\end{array}\right]$, let $\mathbf{b}=\left[\begin{array}{c}10 \\ 3 \\ 7\end{array}\right]$. Denote the columns of A by $\mathbf{a}_{1}, \mathbf{a}_{2}$, a a 2 , let $W=\operatorname{span}\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$, and $S=\left\{\mathbf{a}_{1}, \mathbf{a}_{2}, \mathbf{a}_{3}\right\}$.
(a) How many vectors are in S ? Is $\mathbf{b} \in S$? Why or why not?
(b) How many vectors are in W ? Is $\mathbf{b} \in W$? Why or why not?
