Group \#: \qquad Members: \qquad Rating: \qquad

1. (Definitions) Fill in the blanks.
(a) (1 point) An $n \times n$ matrix A is an orthogonal matrix if \qquad .
(b) (1 point) A set of vectors $X=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ is an orthonormal basis for a vector space W if \qquad .
2. (5 points) Given

$$
\mathbf{y}=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right], \quad \mathbf{u}_{1}=\left[\begin{array}{c}
3 \\
1 \\
-1 \\
3
\end{array}\right], \quad \mathbf{u}_{2}=\left[\begin{array}{c}
-5 \\
1 \\
5 \\
-7
\end{array}\right], \quad \text { and } \quad \mathbf{u}_{3}=\left[\begin{array}{c}
1 \\
1 \\
-2 \\
8
\end{array}\right] .
$$

Let $W=\operatorname{span}\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ (space), $S=\left\{\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}\right\}$ (set), and $U=\left[\mathbf{u}_{1} \mathbf{u}_{2} \mathbf{u}_{3}\right]$ (matrix).
(a) (2 points) Verify that S is not an orthogonal set, then use the Gram-Schmidt Process to produce an orthonormal basis for W.
(b) (3 points) Verify that the system $U x=\mathbf{y}$ is inconsistent, then find its least-squares solutions two ways: (1) via the normal equation; and (2) via the $Q R$ factorization.
3. (3 points) (This is found in §6.6) Suppose that experimental data produce points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ that, when graphed, seem to lie close to a line. We want to determine the parameters β_{0} and β_{1} that make the line as close to the points as possible. This line is called the least-squares line, since the line is constructed by minimizing the sum of the squares of the residual. See Figure 1 for an illustration. Under this assumption, find the equation $y=\beta_{0}+\beta_{1} x$ of the least-squares line that best fits the data points $(1,0),(2,1),(4,2),(5,3)$. (Make sure you graph the points along with the least-squares line to see if your solution is reasonable.)

Figure 1: Fitting a least-squares line to observed data $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$.

