Group #:	Members:	Rating:	
----------	----------	---------	--

- 1. This question concerns orthogonal complement.
 - (a) (2 points) Fill in the blank using the **definition**. This definition needs to be useful/functional for the subsequent problems. Let W be a subspace of \mathbb{R}^n , then the **orthogonal complement** of W is ______.
 - (b) (3 points) Let $W = \text{span}\{v_1, \ldots, v_p\}$. Show that if x is orthogonal to each v_j , for $1 \le j \le p$, then x is orthogonal to every vector in W.
 - (c) (4 points extra credit) Let A be an $m \times n$ matrix. Recall that the four fundamental subspaces completely divide \mathbb{R}^n and \mathbb{R}^m (Row A and Nul A divide \mathbb{R}^n while Col A and Nul A^T divide \mathbb{R}^m). Here, you will show that they do so orthogonally. Prove (i) the orthogonal complement of the row space of A is the null space of A (i.e., $(\text{Row } A)^{\perp} = \text{Nul } A$ or Row $A \perp \text{Nul } A$); (ii) (as a corollary) the orthogonal complement of the column space of A is the null space of A^T (i.e., $(\text{Col } A)^{\perp} = \text{Nul } A^T$ or Col $A \perp \text{Nul } A^T$). (Hint: To show two sets are equal, you need to show that everything found in set one is found in set two and vice versa.)

(d) (3 points) Let
$$u_1 = \begin{bmatrix} 1\\2\\1\\1 \end{bmatrix}$$
, $u_2 = \begin{bmatrix} 2\\1\\2\\1 \end{bmatrix}$, and $W = \text{span } \{u_1, u_2\}$. Use facts in part (c) to find

a basis for the orthogonal complement of W in \mathbb{R}^4 .

2. (2 points) Verify the parallelogram law for vectors u and v in \mathbb{R}^n :

$$||u + v||^{2} + ||u - v||^{2} = 2||u||^{2} + 2||v||^{2}$$