Group \#: \qquad Members: \qquad Rating: \qquad

1. This question concerns orthogonal complement.
(a) (2 points) Fill in the blank using the definition. This definition needs to be useful/functional for the subsequent problems. Let W be a subspace of \mathbb{R}^{n}, then the orthogonal complement of W is \qquad .
(b) (3 points) Let $W=\operatorname{span}\left\{v_{1}, \ldots, v_{p}\right\}$. Show that if x is orthogonal to each v_{j}, for $1 \leq j \leq p$, then x is orthogonal to every vector in W.
(c) (4 points extra credit) Let A be an $m \times n$ matrix. Recall that the four fundamental subspaces completely divide \mathbb{R}^{n} and \mathbb{R}^{m} (Row A and $\operatorname{Nul} A$ divide \mathbb{R}^{n} while $\operatorname{Col} A$ and Nul A^{T} divide \mathbb{R}^{m}). Here, you will show that they do so orthogonally. Prove (i) the orthogonal complement of the row space of A is the null space of A (i.e., (Row $A)^{\perp}=\operatorname{Nul} A$ or Row A $\perp \operatorname{Nul} A$); (ii) (as a corollary) the orthogonal complement of the column space of A is the null space of A^{T} (i.e., $(\operatorname{Col} A)^{\perp}=\operatorname{Nul} A^{T}$ or $\operatorname{Col} A \perp \operatorname{Nul} A^{T}$). (Hint: To show two sets are equal, you need to show that everything found in set one is found in set two and vice versa.)
(d) (3 points) Let $u_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1 \\ 1\end{array}\right], u_{2}=\left[\begin{array}{l}2 \\ 1 \\ 2 \\ 1\end{array}\right]$, and $W=\operatorname{span}\left\{u_{1}, u_{2}\right\}$. Use facts in part (c) to find a basis for the orthogonal complement of W in \mathbb{R}^{4}.
2. (2 points) Verify the parallelogram law for vectors u and v in \mathbb{R}^{n} :

$$
\|u+v\|^{2}+\|u-v\|^{2}=2\|u\|^{2}+2\|v\|^{2}
$$

