Group \#: \qquad Members: \qquad Rating: \qquad

1. Fill in the blanks.
(a) (1 point) A square matrix A is diagonalizable if \qquad .
2. (4 points) Determine whether the following matrices are diagonalizable (over the real numbers). If so, diagonalize it by finding the appropriate P (invertible) and D (diagonal) matrices so that $A=P D P^{-1}$. If not, explain why not.
(a) $A=\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]$.
(b) $B=\left[\begin{array}{ccc}1 & 2 & -3 \\ 2 & 5 & -2 \\ 1 & 3 & 1\end{array}\right]$.
3. Prove or disprove (i.e., give a counterexample) the following statements.
(a) (2 points) If a $n \times n$ matrix A is diagonalizable, then A is invertible.
(b) (2 points) If a $n \times n$ matrix A is invertible, then A is diagonalizable.
(c) (1 point) If a $n \times n$ matrix A does not have n distinct eigenvalues, then A is not diagonalizable.
