Group.Quiz.20

Group #: Members: Rating:		Members:		Rating:	
---------------------------	--	----------	--	---------	--

- 1. Fill in the blanks.
 - (a) (1 point) A square matrix A is diagonalizable if _____.
- 2. (4 points) Determine whether the following matrices are diagonalizable (over the real numbers). If so, diagonalize it by finding the appropriate P (invertible) and D (diagonal) matrices so that $A = PDP^{-1}$. If not, explain why not.

(a)
$$A = \begin{bmatrix} 3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3 \end{bmatrix}$$
.
(b) $B = \begin{bmatrix} 1 & 2 & -3 \\ 2 & 5 & -2 \\ 1 & 3 & 1 \end{bmatrix}$.

- 3. Prove or disprove (i.e., give a counterexample) the following statements.
 - (a) (2 points) If a $n \times n$ matrix A is diagonalizable, then A is invertible.
 - (b) (2 points) If a $n \times n$ matrix A is invertible, then A is diagonalizable.
 - (c) (1 point) If a $n \times n$ matrix A does not have n distinct eigenvalues, then A is not diagonalizable.