Group \#: \qquad Members: \qquad Rating: \qquad

1. (4 points) Given $A=\left[\begin{array}{cc}-4 & 3 \\ 2 & 1\end{array}\right]$.
(a) (2 points) Find the characteristic polynomial of A and its eigenvalues.
(b) (2 points) For each eigenvalue, find a basis for its associated eigenspace. (Note: Your answer for the basis should be a set of finitely many vectors.)
2. (3 points) In this problem, let's explore what it means for a matrix to have an eigenvalue of 0 .

- A has an eigenvalue of 0 means $A x=0 x=0$ has a non-trivial solution.
- But $A x=0$ has a non-trivial solution if and only if A is \qquad .
- Hence, A is \qquad if and only if A does not have an eigenvalue of 0 .

Please add this fact to the invertible matrix theorem and use it to find an eigenvalue of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3\end{array}\right]$ without any calculation. Justify your answer.
3. (3 points) In this problem, let's examine a class of matrices whose eigenvalues are readily available.
(a) What are the eigenvalues of a diagonal matrix $D=\left[\begin{array}{ccccc}d_{11} & 0 & 0 & \ldots & 0 \\ 0 & d_{22} & 0 & \ldots & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & 0 & \ldots & d_{n n}\end{array}\right]$ and why?
(b) What are the eigenvalues of a triangular matrix (either upper or lower), e.g., an upper

$$
\text { triangular matrix } U=\left[\begin{array}{ccccc}
u_{11} & u_{12} & u_{13} & \ldots & u_{1 n} \\
0 & u_{22} & u_{23} & \ldots & u_{2 n} \\
\vdots & & \ddots & & \vdots \\
0 & 0 & 0 & \ldots & u_{n n}
\end{array}\right] \text { and why? }
$$

Use these facts to construct an invertible 5×5 matrix that has an eigenvalue of algebraic multiplicity two and an eigenvalue of algebraic multiplicity three.

