Group \#: \qquad Members: \qquad Rating: \qquad

1. (2 points) Let $b_{1}=\left[\begin{array}{c}-1 \\ 8\end{array}\right], b_{2}=\left[\begin{array}{c}1 \\ -7\end{array}\right], c_{1}=\left[\begin{array}{l}1 \\ 2\end{array}\right], c_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ be such that $\mathcal{B}=\left\{b_{1}, b_{2}\right\}$ and $\mathcal{C}=\left\{c_{1}, c_{2}\right\}$ are two bases for \mathbb{R}^{2}. Given that $[x]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$, find $[x]_{\mathcal{C}}$.
2. (4 points) In \mathbb{P}_{2}, find the change-of-coordinates matrix from the basis $\mathcal{B}=\left\{1-3 t^{2}, 2+t-5 t^{2}, 1+\right.$ $2 t\}$ to the standard basis. Then write t^{2} as a linear combination of the polynomials in \mathcal{B}.
3. (4 points) Let $\mathcal{D}=\left\{\mathbf{d}_{1}, \mathbf{d}_{2}, \mathbf{d}_{3}\right\}$ and $\mathcal{F}=\left\{\mathbf{f}_{1}, \mathbf{f}_{2}, \mathbf{f}_{3}\right\}$ be bases for a vector space V, and suppose $\mathbf{f}_{1}=2 \mathbf{d}_{1}-\mathbf{d}_{2}+\mathbf{d}_{3}, \mathbf{f}_{2}=3 \mathbf{d}_{2}+\mathbf{d}_{3}$, and $\mathbf{f}_{3}=-3 \mathbf{d}_{1}+2 \mathbf{d}_{3}$.
(a) (2 points) Find the change-of-coordinates matrix from \mathcal{F} to \mathcal{D}.
(b) (2 points) Find $[\mathbf{x}]_{\mathcal{D}}$ for $\mathbf{x}=\mathbf{f}_{1}-2 \mathbf{f}_{2}+2 \mathbf{f}_{3}$.
