Group \#: \qquad Members: \qquad Rating: \qquad

1. (3 points) Let $A=\left[\begin{array}{ccccc}2 & -1 & 1 & -6 & 8 \\ 1 & -2 & -4 & 3 & -2 \\ -7 & 8 & 10 & 3 & -10 \\ 4 & -5 & -7 & 0 & 4\end{array}\right]$.
(a) Find a basis for $\operatorname{Col} A$ and $\operatorname{rank} A$.
(b) Find a basis for $\operatorname{Nul} A$ and $\operatorname{dim} \operatorname{Nul} A$.
(c) Verify the rank theorem.
2. (2 points) Find the dimension of the subspace of all vectors in \mathbb{R}^{5} whose first, second, and forth entries are equal. Make sure you justify your answers.
3. (1 point) The statement " \mathbb{R}^{2} is a two-dimensional vector subspace of \mathbb{R}^{3} " is false. Correct the statement to make it true.
4. (2 points) Mark each statement True or False. Justify your answer. Be sure to provide a counterexample for a false statement.
(a) The sum of the dimensions of the row space and the null space of A equals the number of rows in A.
(b) If B is any echelon form of A, then the pivot columns of B form a basis for the column space of A.
5. (2 points) The rank theorem gives a counting rule that is useful in getting a sense of what the solution to a large system looks like before having to solve it. For example, a scientist has found two independent solutions to a homogeneous system of 40 equations in 42 variables. All other solutions can be constructed as a linear combination of these two solutions. Can the scientist be certain that an associated non-homogeneous system has a solution? Why or why not?
